一个新的SAS®宏灵活的参数生存建模:应用于临床试验和监测数据

R. Dewar, I. Khan
{"title":"一个新的SAS®宏灵活的参数生存建模:应用于临床试验和监测数据","authors":"R. Dewar, I. Khan","doi":"10.4155/CLI.15.54","DOIUrl":null,"url":null,"abstract":"Survival analysis is often performed using the Cox proportional hazards model. Parametric models are useful in several applications, including health economic evaluation, cancer surveillance and event prediction. Flexible parametric models extend standard parametric models (e.g., Weibull) to increase the flexibility of the shape of the hazard function. We present a new SAS® macro for implementing flexible parametric models with a similar functionality to that of Stata®, with examples using data from cancer surveillance and clinical trials. Results from SAS were identical with similar computational time to Stata. The flexible parametric approach to modeling survival data is shown to be superior to standard parametric methods. This SAS macro will facilitate an increase in the use of flexible parametric models.","PeriodicalId":10369,"journal":{"name":"Clinical investigation","volume":"2 1","pages":"855-866"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A new SAS ® macro for flexible parametric survival modeling: applications to clinical trials and surveillance data\",\"authors\":\"R. Dewar, I. Khan\",\"doi\":\"10.4155/CLI.15.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Survival analysis is often performed using the Cox proportional hazards model. Parametric models are useful in several applications, including health economic evaluation, cancer surveillance and event prediction. Flexible parametric models extend standard parametric models (e.g., Weibull) to increase the flexibility of the shape of the hazard function. We present a new SAS® macro for implementing flexible parametric models with a similar functionality to that of Stata®, with examples using data from cancer surveillance and clinical trials. Results from SAS were identical with similar computational time to Stata. The flexible parametric approach to modeling survival data is shown to be superior to standard parametric methods. This SAS macro will facilitate an increase in the use of flexible parametric models.\",\"PeriodicalId\":10369,\"journal\":{\"name\":\"Clinical investigation\",\"volume\":\"2 1\",\"pages\":\"855-866\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4155/CLI.15.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/CLI.15.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

生存分析通常使用Cox比例风险模型进行。参数模型在健康经济评估、癌症监测和事件预测等多个领域都很有用。柔性参数模型扩展了标准参数模型(如威布尔模型),增加了危险函数形状的灵活性。我们提出了一个新的SAS®宏,用于实现具有与Stata®类似功能的灵活参数模型,并使用来自癌症监测和临床试验的数据作为示例。SAS的计算结果与Stata相同,计算时间相近。对生存数据建模的灵活参数化方法优于标准参数化方法。这个SAS宏将有助于增加灵活参数模型的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new SAS ® macro for flexible parametric survival modeling: applications to clinical trials and surveillance data
Survival analysis is often performed using the Cox proportional hazards model. Parametric models are useful in several applications, including health economic evaluation, cancer surveillance and event prediction. Flexible parametric models extend standard parametric models (e.g., Weibull) to increase the flexibility of the shape of the hazard function. We present a new SAS® macro for implementing flexible parametric models with a similar functionality to that of Stata®, with examples using data from cancer surveillance and clinical trials. Results from SAS were identical with similar computational time to Stata. The flexible parametric approach to modeling survival data is shown to be superior to standard parametric methods. This SAS macro will facilitate an increase in the use of flexible parametric models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Targeting TGF-beta pathway with COVID-19 Drug Candidate ARTIVeda/PulmoHeal Accelerates Recovery from Mild-Moderate COVID-19 A Prospective on Allergic Rhinitis Use of Cladribine for multiple sclerosis treatment: An image article Thalidomide may be an effective medicine for Blau Syndrome Prophylactic administration of a clinically safe low dose of the COVID-19 drug candidate Rejuveinix (RJX) effectively prevents fatal cytokine storm and mitigates inflammatory organ injury in a mouse model of sepsis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1