{"title":"多接收机多频无线电力传输用多层矩形线圈的研制","authors":"C. Jiang, K. Chau, W. Han, Wei Liu","doi":"10.2528/PIER18060206","DOIUrl":null,"url":null,"abstract":"In this paper, three viable multilayer rectangular coil structures, namely the spiral, concentrated and uneven compound types, are proposed and analyzed. In the multiple-receiver multiplefrequency wireless power transfer system, the compact coil topologies are particularly preferable and should fulfill the required performance of magnetic field with the compact size design. In order to minimize the variation of magnetic fields that can be picked up by multiple receivers, the uneven compound type is newly derived by combining the merits of both the spiral and concentrated types. Because of providing more uniform magnetic flux density distribution, the uneven compound type can achieve better tolerance of misalignment. Without any misalignment, its transmission efficiency can reach up to 92%. Moreover, their electric potential distributions are analyzed to provide guidance for the maximum input current at the desired operation frequency. Both finite element analysis and experimental results are given to verify the validity of the proposed coil structures.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"18 1","pages":"15-24"},"PeriodicalIF":6.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Development of Multilayer Rectangular Coils for Multiple-Receiver Multiple-Frequency Wireless Power Transfer\",\"authors\":\"C. Jiang, K. Chau, W. Han, Wei Liu\",\"doi\":\"10.2528/PIER18060206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, three viable multilayer rectangular coil structures, namely the spiral, concentrated and uneven compound types, are proposed and analyzed. In the multiple-receiver multiplefrequency wireless power transfer system, the compact coil topologies are particularly preferable and should fulfill the required performance of magnetic field with the compact size design. In order to minimize the variation of magnetic fields that can be picked up by multiple receivers, the uneven compound type is newly derived by combining the merits of both the spiral and concentrated types. Because of providing more uniform magnetic flux density distribution, the uneven compound type can achieve better tolerance of misalignment. Without any misalignment, its transmission efficiency can reach up to 92%. Moreover, their electric potential distributions are analyzed to provide guidance for the maximum input current at the desired operation frequency. Both finite element analysis and experimental results are given to verify the validity of the proposed coil structures.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"18 1\",\"pages\":\"15-24\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER18060206\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER18060206","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Development of Multilayer Rectangular Coils for Multiple-Receiver Multiple-Frequency Wireless Power Transfer
In this paper, three viable multilayer rectangular coil structures, namely the spiral, concentrated and uneven compound types, are proposed and analyzed. In the multiple-receiver multiplefrequency wireless power transfer system, the compact coil topologies are particularly preferable and should fulfill the required performance of magnetic field with the compact size design. In order to minimize the variation of magnetic fields that can be picked up by multiple receivers, the uneven compound type is newly derived by combining the merits of both the spiral and concentrated types. Because of providing more uniform magnetic flux density distribution, the uneven compound type can achieve better tolerance of misalignment. Without any misalignment, its transmission efficiency can reach up to 92%. Moreover, their electric potential distributions are analyzed to provide guidance for the maximum input current at the desired operation frequency. Both finite element analysis and experimental results are given to verify the validity of the proposed coil structures.
期刊介绍:
Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.