R. Giannuzzi, Vitantonio Primiceri, Riccardo Scarfiello, M. Pugliese, F. Mariano, A. Maggiore, C. T. Prontera, S. Carallo, Cristian De Vito, L. Carbone, V. Maiorano
{"title":"基于缺氧WO3-x和TiO2纳米晶体水共混物的光致变色纺织品","authors":"R. Giannuzzi, Vitantonio Primiceri, Riccardo Scarfiello, M. Pugliese, F. Mariano, A. Maggiore, C. T. Prontera, S. Carallo, Cristian De Vito, L. Carbone, V. Maiorano","doi":"10.3390/textiles2030021","DOIUrl":null,"url":null,"abstract":"With the main objective being to develop photochromic smart textiles, in this paper, we studied the photochromic behavior of WO3-x nanocrystals (NCs) cooperatively interacting with variable amounts of TiO2 NCs. We tested several blends of WO3-x:TiO2 NCs, admixed in different compositions (relative molar ratio of 4:0, 3:1, 2:2, 1:3, 0:4) and electrostatically interfacing because of opposite values of Z-potential, for photo-induced chromogenic textiles. We further monitored the photochromic sensitivity of NC-impregnated textiles after exposure to a few solvents (i.e., methanol, ethanol, and isopropanol) or when over-coated with different polymeric matrices such as natural cellulose or ionic conductive Nafion. The optimization of the compositions of the WO3-x:TiO2 blends embedded in polymeric matrices, allowed the nanostructured photochromic textiles to show rapid and tunable coloration (<5 min) and bleaching kinetics (~5 in at 75 °C or 6 h at room temperature) along with good recovery and cycling stability. This study features a simple strategy for the widespread application of WO3-x:TiO2-based photochromic smart textiles.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Photochromic Textiles Based upon Aqueous Blends of Oxygen-Deficient WO3-x and TiO2 Nanocrystals\",\"authors\":\"R. Giannuzzi, Vitantonio Primiceri, Riccardo Scarfiello, M. Pugliese, F. Mariano, A. Maggiore, C. T. Prontera, S. Carallo, Cristian De Vito, L. Carbone, V. Maiorano\",\"doi\":\"10.3390/textiles2030021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the main objective being to develop photochromic smart textiles, in this paper, we studied the photochromic behavior of WO3-x nanocrystals (NCs) cooperatively interacting with variable amounts of TiO2 NCs. We tested several blends of WO3-x:TiO2 NCs, admixed in different compositions (relative molar ratio of 4:0, 3:1, 2:2, 1:3, 0:4) and electrostatically interfacing because of opposite values of Z-potential, for photo-induced chromogenic textiles. We further monitored the photochromic sensitivity of NC-impregnated textiles after exposure to a few solvents (i.e., methanol, ethanol, and isopropanol) or when over-coated with different polymeric matrices such as natural cellulose or ionic conductive Nafion. The optimization of the compositions of the WO3-x:TiO2 blends embedded in polymeric matrices, allowed the nanostructured photochromic textiles to show rapid and tunable coloration (<5 min) and bleaching kinetics (~5 in at 75 °C or 6 h at room temperature) along with good recovery and cycling stability. This study features a simple strategy for the widespread application of WO3-x:TiO2-based photochromic smart textiles.\",\"PeriodicalId\":94219,\"journal\":{\"name\":\"Textiles (Basel, Switzerland)\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Textiles (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/textiles2030021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textiles (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/textiles2030021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photochromic Textiles Based upon Aqueous Blends of Oxygen-Deficient WO3-x and TiO2 Nanocrystals
With the main objective being to develop photochromic smart textiles, in this paper, we studied the photochromic behavior of WO3-x nanocrystals (NCs) cooperatively interacting with variable amounts of TiO2 NCs. We tested several blends of WO3-x:TiO2 NCs, admixed in different compositions (relative molar ratio of 4:0, 3:1, 2:2, 1:3, 0:4) and electrostatically interfacing because of opposite values of Z-potential, for photo-induced chromogenic textiles. We further monitored the photochromic sensitivity of NC-impregnated textiles after exposure to a few solvents (i.e., methanol, ethanol, and isopropanol) or when over-coated with different polymeric matrices such as natural cellulose or ionic conductive Nafion. The optimization of the compositions of the WO3-x:TiO2 blends embedded in polymeric matrices, allowed the nanostructured photochromic textiles to show rapid and tunable coloration (<5 min) and bleaching kinetics (~5 in at 75 °C or 6 h at room temperature) along with good recovery and cycling stability. This study features a simple strategy for the widespread application of WO3-x:TiO2-based photochromic smart textiles.