{"title":"多尺度数据分析——信息融合与恒时聚类","authors":"F. Murtagh , A. Aussem , J.-L. Starck","doi":"10.1016/S0083-6656(97)00039-1","DOIUrl":null,"url":null,"abstract":"<div><p>We describe the use of the wavelet transform for multivariate data analysis problems. In prediction, a multiscale transform of time-varying data can allow forecasts of each scale, followed by a combining of the individual forecasts. The use of a wavelet transform with noise modeling for point pattern clustering can lead to the result, which initially appears counterintuitive, of clustering in constant computational time, <em>O</em> (1).</p></div>","PeriodicalId":101275,"journal":{"name":"Vistas in Astronomy","volume":"41 3","pages":"Pages 359-364"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0083-6656(97)00039-1","citationCount":"1","resultStr":"{\"title\":\"Multiscale data analysis - information fusion and constant-time clustering\",\"authors\":\"F. Murtagh , A. Aussem , J.-L. Starck\",\"doi\":\"10.1016/S0083-6656(97)00039-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We describe the use of the wavelet transform for multivariate data analysis problems. In prediction, a multiscale transform of time-varying data can allow forecasts of each scale, followed by a combining of the individual forecasts. The use of a wavelet transform with noise modeling for point pattern clustering can lead to the result, which initially appears counterintuitive, of clustering in constant computational time, <em>O</em> (1).</p></div>\",\"PeriodicalId\":101275,\"journal\":{\"name\":\"Vistas in Astronomy\",\"volume\":\"41 3\",\"pages\":\"Pages 359-364\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0083-6656(97)00039-1\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vistas in Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0083665697000391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vistas in Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0083665697000391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiscale data analysis - information fusion and constant-time clustering
We describe the use of the wavelet transform for multivariate data analysis problems. In prediction, a multiscale transform of time-varying data can allow forecasts of each scale, followed by a combining of the individual forecasts. The use of a wavelet transform with noise modeling for point pattern clustering can lead to the result, which initially appears counterintuitive, of clustering in constant computational time, O (1).