机电系统的拓扑方法综述

Pub Date : 2022-01-01 DOI:10.3844/jmrsp.2022.7.21
J. Samon, Damasse Harold Tchouazong
{"title":"机电系统的拓扑方法综述","authors":"J. Samon, Damasse Harold Tchouazong","doi":"10.3844/jmrsp.2022.7.21","DOIUrl":null,"url":null,"abstract":"Corresponding Author: Jean Bosco Samon 1Laboratory of Mechanics, Material and Photonic, Mechanical Department, ENSAIUniversity of Ngaoundere, Ngaoundere, Cameroon Email: jboscosamon@gmail.com Abstract: An interest in the mechanical topology approach is to reduce the mass considerably in order to minimize the costs of manufacturing, transporting and purchasing products. The same interest can be found in mechatronic topological approaches where many disciplines should be fit together, facing therefore many and variant constraints. Distinguish topological approaches are found in the literature. Many are more specific for a single domain than a complex system. Two main classes of topological approaches are structured. The first class is based on a theoretical approach that states the KBR topological graph and the MGS language while topology is primarily structural form. These topological modeling approaches tend to combine two disciplines of a Mechatronic system. The second class is the disciplined approaches that recapitulate the topological approaches of each mechatronic discipline. The topological optimization of the mechanical, electronic and control model is summarized. In the light of the literature, there is a lack of a specific topological method for a mechatronic system that encompasses the structural complexity of complex systems. Since the topology is first and foremost a structural shape, the mechanical topological model, which is structurally based, should constitute the algorithmic foundation by integrating the functional and structural constraints of other disciplines.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topological Approaches to Mechatronic Systems: A Review\",\"authors\":\"J. Samon, Damasse Harold Tchouazong\",\"doi\":\"10.3844/jmrsp.2022.7.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corresponding Author: Jean Bosco Samon 1Laboratory of Mechanics, Material and Photonic, Mechanical Department, ENSAIUniversity of Ngaoundere, Ngaoundere, Cameroon Email: jboscosamon@gmail.com Abstract: An interest in the mechanical topology approach is to reduce the mass considerably in order to minimize the costs of manufacturing, transporting and purchasing products. The same interest can be found in mechatronic topological approaches where many disciplines should be fit together, facing therefore many and variant constraints. Distinguish topological approaches are found in the literature. Many are more specific for a single domain than a complex system. Two main classes of topological approaches are structured. The first class is based on a theoretical approach that states the KBR topological graph and the MGS language while topology is primarily structural form. These topological modeling approaches tend to combine two disciplines of a Mechatronic system. The second class is the disciplined approaches that recapitulate the topological approaches of each mechatronic discipline. The topological optimization of the mechanical, electronic and control model is summarized. In the light of the literature, there is a lack of a specific topological method for a mechatronic system that encompasses the structural complexity of complex systems. Since the topology is first and foremost a structural shape, the mechanical topological model, which is structurally based, should constitute the algorithmic foundation by integrating the functional and structural constraints of other disciplines.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jmrsp.2022.7.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmrsp.2022.7.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通讯作者:Jean Bosco Samon 1喀麦隆恩oundere恩oundere ENSAIUniversity of Ngaoundere机械系力学、材料和光子实验室电子邮件:jboscosamon@gmail.com摘要:机械拓扑方法的一个兴趣是大大减少质量,以最大限度地降低制造、运输和采购产品的成本。同样的兴趣可以在机电拓扑方法中找到,其中许多学科应该结合在一起,因此面临许多不同的约束。区分拓扑方法是在文献中发现的。与复杂的系统相比,许多方法更具体于单个领域。主要有两类拓扑方法。第一类是基于理论方法,说明了KBR拓扑图和MGS语言,而拓扑图主要是结构形式。这些拓扑建模方法倾向于结合机电系统的两个学科。第二类是学科方法,概括了每个机电学科的拓扑方法。总结了机械、电子和控制模型的拓扑优化。在文献的光,有缺乏一个具体的拓扑方法的机电一体化系统,包括复杂系统的结构复杂性。由于拓扑首先是一种结构形状,因此以结构为基础的力学拓扑模型应该通过整合其他学科的功能约束和结构约束来构成算法基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Topological Approaches to Mechatronic Systems: A Review
Corresponding Author: Jean Bosco Samon 1Laboratory of Mechanics, Material and Photonic, Mechanical Department, ENSAIUniversity of Ngaoundere, Ngaoundere, Cameroon Email: jboscosamon@gmail.com Abstract: An interest in the mechanical topology approach is to reduce the mass considerably in order to minimize the costs of manufacturing, transporting and purchasing products. The same interest can be found in mechatronic topological approaches where many disciplines should be fit together, facing therefore many and variant constraints. Distinguish topological approaches are found in the literature. Many are more specific for a single domain than a complex system. Two main classes of topological approaches are structured. The first class is based on a theoretical approach that states the KBR topological graph and the MGS language while topology is primarily structural form. These topological modeling approaches tend to combine two disciplines of a Mechatronic system. The second class is the disciplined approaches that recapitulate the topological approaches of each mechatronic discipline. The topological optimization of the mechanical, electronic and control model is summarized. In the light of the literature, there is a lack of a specific topological method for a mechatronic system that encompasses the structural complexity of complex systems. Since the topology is first and foremost a structural shape, the mechanical topological model, which is structurally based, should constitute the algorithmic foundation by integrating the functional and structural constraints of other disciplines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1