符号回归和遗传规划在对称加密算法密码分析中的应用

Tomas Smetka, I. Homoliak, P. Hanáček
{"title":"符号回归和遗传规划在对称加密算法密码分析中的应用","authors":"Tomas Smetka, I. Homoliak, P. Hanáček","doi":"10.1109/CCST.2016.7815720","DOIUrl":null,"url":null,"abstract":"The aim of the paper is to show different point of view on the problem of cryptanalysis of symmetric encryption algorithms. Our dissimilar approach, compared to the existing methods, lies in the use of the power of evolutionary principles which are in our cryptanalytic system applied with leveraging of the genetic programming (GP) in order to perform known plaintext attack (KPA). Our expected result is to find a program (i.e. function) that models the behavior of a symmetric encryption algorithm DES instantiated by specific key. If such a program would exist, then it could be possible to decipher new messages that have been encrypted by unknown secret key. The GP is employed as the basis of this work. GP is an evolutionary algorithm-based methodology inspired by biological evolution which is capable of creating computer programs solving a corresponding problem. The symbolic regression (SR) method is employed as the application of GP in practical problem. The SR method builds functions from predefined set of terminal blocks in the process of the GP evolution; and these functions approximate a list of input value pairs. The evolution of GP is controlled by a fitness function which evaluates the goal of a corresponding problem. The Hamming distance, a difference between a current individual value and a reference one, is chosen as the fitness function for our cryptanalysis problem. The results of our experiments did not confirmed initial expectation. The number of encryption rounds did not influence the quality of the best individual, however, its quality was influenced by the cardinality of a training set. The elimination of the initial and final permutations had no influence on the quality of the results in the process of evolution. These results showed that our KPA GP solution is not capable of revealing internal structure of the DES algorithm's behavior.","PeriodicalId":6510,"journal":{"name":"2016 IEEE International Carnahan Conference on Security Technology (ICCST)","volume":"69 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the application of symbolic regression and genetic programming for cryptanalysis of symmetric encryption algorithm\",\"authors\":\"Tomas Smetka, I. Homoliak, P. Hanáček\",\"doi\":\"10.1109/CCST.2016.7815720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the paper is to show different point of view on the problem of cryptanalysis of symmetric encryption algorithms. Our dissimilar approach, compared to the existing methods, lies in the use of the power of evolutionary principles which are in our cryptanalytic system applied with leveraging of the genetic programming (GP) in order to perform known plaintext attack (KPA). Our expected result is to find a program (i.e. function) that models the behavior of a symmetric encryption algorithm DES instantiated by specific key. If such a program would exist, then it could be possible to decipher new messages that have been encrypted by unknown secret key. The GP is employed as the basis of this work. GP is an evolutionary algorithm-based methodology inspired by biological evolution which is capable of creating computer programs solving a corresponding problem. The symbolic regression (SR) method is employed as the application of GP in practical problem. The SR method builds functions from predefined set of terminal blocks in the process of the GP evolution; and these functions approximate a list of input value pairs. The evolution of GP is controlled by a fitness function which evaluates the goal of a corresponding problem. The Hamming distance, a difference between a current individual value and a reference one, is chosen as the fitness function for our cryptanalysis problem. The results of our experiments did not confirmed initial expectation. The number of encryption rounds did not influence the quality of the best individual, however, its quality was influenced by the cardinality of a training set. The elimination of the initial and final permutations had no influence on the quality of the results in the process of evolution. These results showed that our KPA GP solution is not capable of revealing internal structure of the DES algorithm's behavior.\",\"PeriodicalId\":6510,\"journal\":{\"name\":\"2016 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"volume\":\"69 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2016.7815720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2016.7815720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的目的是对对称加密算法的密码分析问题给出不同的观点。与现有方法相比,我们的不同方法在于使用我们的密码分析系统中的进化原理的力量,利用遗传编程(GP)来执行已知的明文攻击(KPA)。我们期望的结果是找到一个程序(即函数)来模拟由特定密钥实例化的对称加密算法DES的行为。如果存在这样的程序,那么就有可能破译由未知密钥加密的新消息。GP被用作这项工作的基础。GP是一种基于进化算法的方法论,它受到生物进化的启发,能够创建解决相应问题的计算机程序。采用符号回归(SR)方法作为GP在实际问题中的应用。SR方法在GP演化过程中从预定义的一组终端块中构建函数;这些函数近似于输入值对的列表。GP的演化由一个适应度函数控制,适应度函数用来评价相应问题的目标。选择汉明距离,即当前个体值与参考值之间的差值,作为我们的密码分析问题的适应度函数。我们的实验结果没有证实最初的预期。加密轮数不影响最佳个体的质量,但其质量受到训练集基数的影响。在进化过程中,消除初始和最终排列对结果的质量没有影响。这些结果表明,我们的KPA GP解不能揭示DES算法行为的内部结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the application of symbolic regression and genetic programming for cryptanalysis of symmetric encryption algorithm
The aim of the paper is to show different point of view on the problem of cryptanalysis of symmetric encryption algorithms. Our dissimilar approach, compared to the existing methods, lies in the use of the power of evolutionary principles which are in our cryptanalytic system applied with leveraging of the genetic programming (GP) in order to perform known plaintext attack (KPA). Our expected result is to find a program (i.e. function) that models the behavior of a symmetric encryption algorithm DES instantiated by specific key. If such a program would exist, then it could be possible to decipher new messages that have been encrypted by unknown secret key. The GP is employed as the basis of this work. GP is an evolutionary algorithm-based methodology inspired by biological evolution which is capable of creating computer programs solving a corresponding problem. The symbolic regression (SR) method is employed as the application of GP in practical problem. The SR method builds functions from predefined set of terminal blocks in the process of the GP evolution; and these functions approximate a list of input value pairs. The evolution of GP is controlled by a fitness function which evaluates the goal of a corresponding problem. The Hamming distance, a difference between a current individual value and a reference one, is chosen as the fitness function for our cryptanalysis problem. The results of our experiments did not confirmed initial expectation. The number of encryption rounds did not influence the quality of the best individual, however, its quality was influenced by the cardinality of a training set. The elimination of the initial and final permutations had no influence on the quality of the results in the process of evolution. These results showed that our KPA GP solution is not capable of revealing internal structure of the DES algorithm's behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI facial recognition and biometric detection: balancing consumer rights and corporate interests Radar Error Calculation and Correction System Based on ADS-B and Business Intelligent Tools MIMO Cable Guided Radar Assessing the common authorship of a set of questioned signature images A fuzzy interval valued fusion technique for multi-modal 3D face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1