基于PSO-RBFNN算法的列车车轮踏面损伤识别

Yong Zhao, Hong Ye, Zheng-sheng Kang, Song-shan Shi, Lin Zhou
{"title":"基于PSO-RBFNN算法的列车车轮踏面损伤识别","authors":"Yong Zhao, Hong Ye, Zheng-sheng Kang, Song-shan Shi, Lin Zhou","doi":"10.1109/ICNC.2012.6234662","DOIUrl":null,"url":null,"abstract":"In order to the recognition of the train wheel tread damages, the pattern recognition method of the train wheel tread damages based on PSO-RBFNN was developed. The algorithm uses PSO-RBFNN algorithm to optimize center and spread of RBFNN, the connection weight value is sovled by least squares method. Compared with the traditional RBFNN,BP and GA-RBFNN, the experiment results show that the recognition rate of testing samples is higher than the traditional RBFNN, BP and GA-RBFNN, the evolutional generations of PSO-RBFNN algorithm were less than RBFNN, BP and GA-RBFNN.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"70 1","pages":"1093-1095"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The recognition of train wheel tread damages based on PSO-RBFNN algorithm\",\"authors\":\"Yong Zhao, Hong Ye, Zheng-sheng Kang, Song-shan Shi, Lin Zhou\",\"doi\":\"10.1109/ICNC.2012.6234662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to the recognition of the train wheel tread damages, the pattern recognition method of the train wheel tread damages based on PSO-RBFNN was developed. The algorithm uses PSO-RBFNN algorithm to optimize center and spread of RBFNN, the connection weight value is sovled by least squares method. Compared with the traditional RBFNN,BP and GA-RBFNN, the experiment results show that the recognition rate of testing samples is higher than the traditional RBFNN, BP and GA-RBFNN, the evolutional generations of PSO-RBFNN algorithm were less than RBFNN, BP and GA-RBFNN.\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"70 1\",\"pages\":\"1093-1095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了识别列车车轮踏面损伤,提出了基于PSO-RBFNN的列车车轮踏面损伤模式识别方法。该算法采用PSO-RBFNN算法对RBFNN的中心和扩散进行优化,采用最小二乘法求解连接权值。实验结果表明,与传统RBFNN、BP和GA-RBFNN相比,PSO-RBFNN对测试样本的识别率高于传统RBFNN、BP和GA-RBFNN, PSO-RBFNN算法的进化代数少于RBFNN、BP和GA-RBFNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The recognition of train wheel tread damages based on PSO-RBFNN algorithm
In order to the recognition of the train wheel tread damages, the pattern recognition method of the train wheel tread damages based on PSO-RBFNN was developed. The algorithm uses PSO-RBFNN algorithm to optimize center and spread of RBFNN, the connection weight value is sovled by least squares method. Compared with the traditional RBFNN,BP and GA-RBFNN, the experiment results show that the recognition rate of testing samples is higher than the traditional RBFNN, BP and GA-RBFNN, the evolutional generations of PSO-RBFNN algorithm were less than RBFNN, BP and GA-RBFNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BER and HPA Nonlinearities Compensation for Joint Polar Coded SCMA System over Rayleigh Fading Channels Harmonizing Wearable Biosensor Data Streams to Test Polysubstance Detection. eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data. Automatic Detection of Opioid Intake Using Wearable Biosensor. A New Mining Method to Detect Real Time Substance Use Events from Wearable Biosensor Data Stream.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1