Raphael Mieth, Fabian Markschies, Ruixin Zhou, F. Gauterin, A. Stephan
{"title":"基于时间框架的最大负载分析增强了客户特定驱动系统设计参数的推导","authors":"Raphael Mieth, Fabian Markschies, Ruixin Zhou, F. Gauterin, A. Stephan","doi":"10.3390/vehicles5010017","DOIUrl":null,"url":null,"abstract":"Only a small part of the high performance of electric drive systems in vehicles is used in everyday operation by customers. As a result, most drives are not operated in the optimum efficiency range. Designing a suitable drive system, whose performance is aligned with actual customer requirements, presents the potential to increase efficiency. Based on the findings of previous research, this paper serves to complement an existing method, which already introduced the basic method of transferring statistical customer data into relevant parameters for the design of a customer-specific drive system. In order to improve the method, further criteria for the selection of relevant time series come into place. Furthermore, the impact on maximum loads resulting from various sequences of the selected time series is identified and evaluated with time frame-based analysis. A new approach for the effective computation of maximum design-relevant loads in the admissible time frame range is introduced and validated. By taking this approach, the sensitivity of the derived design parameters regarding various time series sequence is evaluated in the context of selected datasets. In addition, concatenations of time series are identified which may have a relevant influence on the maximum loads. Consequently, the design process is safeguarded thoroughly against potential maximum loads as well as the associated thermal stresses.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Derivation of Customer-Specific Drive System Design Parameters with Time Frame-Based Maximum Load Analysis\",\"authors\":\"Raphael Mieth, Fabian Markschies, Ruixin Zhou, F. Gauterin, A. Stephan\",\"doi\":\"10.3390/vehicles5010017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Only a small part of the high performance of electric drive systems in vehicles is used in everyday operation by customers. As a result, most drives are not operated in the optimum efficiency range. Designing a suitable drive system, whose performance is aligned with actual customer requirements, presents the potential to increase efficiency. Based on the findings of previous research, this paper serves to complement an existing method, which already introduced the basic method of transferring statistical customer data into relevant parameters for the design of a customer-specific drive system. In order to improve the method, further criteria for the selection of relevant time series come into place. Furthermore, the impact on maximum loads resulting from various sequences of the selected time series is identified and evaluated with time frame-based analysis. A new approach for the effective computation of maximum design-relevant loads in the admissible time frame range is introduced and validated. By taking this approach, the sensitivity of the derived design parameters regarding various time series sequence is evaluated in the context of selected datasets. In addition, concatenations of time series are identified which may have a relevant influence on the maximum loads. Consequently, the design process is safeguarded thoroughly against potential maximum loads as well as the associated thermal stresses.\",\"PeriodicalId\":73282,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vehicles5010017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles5010017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced Derivation of Customer-Specific Drive System Design Parameters with Time Frame-Based Maximum Load Analysis
Only a small part of the high performance of electric drive systems in vehicles is used in everyday operation by customers. As a result, most drives are not operated in the optimum efficiency range. Designing a suitable drive system, whose performance is aligned with actual customer requirements, presents the potential to increase efficiency. Based on the findings of previous research, this paper serves to complement an existing method, which already introduced the basic method of transferring statistical customer data into relevant parameters for the design of a customer-specific drive system. In order to improve the method, further criteria for the selection of relevant time series come into place. Furthermore, the impact on maximum loads resulting from various sequences of the selected time series is identified and evaluated with time frame-based analysis. A new approach for the effective computation of maximum design-relevant loads in the admissible time frame range is introduced and validated. By taking this approach, the sensitivity of the derived design parameters regarding various time series sequence is evaluated in the context of selected datasets. In addition, concatenations of time series are identified which may have a relevant influence on the maximum loads. Consequently, the design process is safeguarded thoroughly against potential maximum loads as well as the associated thermal stresses.