{"title":"对象-掩码配准的深度自由变形网络","authors":"Haoyang Zhang, Xuming He","doi":"10.1109/ICCV.2017.456","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of object-mask registration, which aligns a shape mask to a target object instance. Prior work typically formulate the problem as an object segmentation task with mask prior, which is challenging to solve. In this work, we take a transformation based approach that predicts a 2D non-rigid spatial transform and warps the shape mask onto the target object. In particular, we propose a deep spatial transformer network that learns free-form deformations (FFDs) to non-rigidly warp the shape mask based on a multi-level dual mask feature pooling strategy. The FFD transforms are based on B-splines and parameterized by the offsets of predefined control points, which are differentiable. Therefore, we are able to train the entire network in an end-to-end manner based on L2 matching loss. We evaluate our FFD network on a challenging object-mask alignment task, which aims to refine a set of object segment proposals, and our approach achieves the state-of-the-art performance on the Cityscapes, the PASCAL VOC and the MSCOCO datasets.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"19 1","pages":"4261-4269"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Deep Free-Form Deformation Network for Object-Mask Registration\",\"authors\":\"Haoyang Zhang, Xuming He\",\"doi\":\"10.1109/ICCV.2017.456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of object-mask registration, which aligns a shape mask to a target object instance. Prior work typically formulate the problem as an object segmentation task with mask prior, which is challenging to solve. In this work, we take a transformation based approach that predicts a 2D non-rigid spatial transform and warps the shape mask onto the target object. In particular, we propose a deep spatial transformer network that learns free-form deformations (FFDs) to non-rigidly warp the shape mask based on a multi-level dual mask feature pooling strategy. The FFD transforms are based on B-splines and parameterized by the offsets of predefined control points, which are differentiable. Therefore, we are able to train the entire network in an end-to-end manner based on L2 matching loss. We evaluate our FFD network on a challenging object-mask alignment task, which aims to refine a set of object segment proposals, and our approach achieves the state-of-the-art performance on the Cityscapes, the PASCAL VOC and the MSCOCO datasets.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"19 1\",\"pages\":\"4261-4269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Free-Form Deformation Network for Object-Mask Registration
This paper addresses the problem of object-mask registration, which aligns a shape mask to a target object instance. Prior work typically formulate the problem as an object segmentation task with mask prior, which is challenging to solve. In this work, we take a transformation based approach that predicts a 2D non-rigid spatial transform and warps the shape mask onto the target object. In particular, we propose a deep spatial transformer network that learns free-form deformations (FFDs) to non-rigidly warp the shape mask based on a multi-level dual mask feature pooling strategy. The FFD transforms are based on B-splines and parameterized by the offsets of predefined control points, which are differentiable. Therefore, we are able to train the entire network in an end-to-end manner based on L2 matching loss. We evaluate our FFD network on a challenging object-mask alignment task, which aims to refine a set of object segment proposals, and our approach achieves the state-of-the-art performance on the Cityscapes, the PASCAL VOC and the MSCOCO datasets.