裸地上陆地卫星光谱反射率与地表发射率的关系

A. Olioso, X. Briottet, S. Fabre, F. Jacob, A. Michel, S. Nativel, V. Rivalland, J. Roujean
{"title":"裸地上陆地卫星光谱反射率与地表发射率的关系","authors":"A. Olioso, X. Briottet, S. Fabre, F. Jacob, A. Michel, S. Nativel, V. Rivalland, J. Roujean","doi":"10.1109/IGARSS.2019.8899275","DOIUrl":null,"url":null,"abstract":"Land surface emissivity is required for deriving surface temperature from thermal infrared radiances. When using single-channel or two-channel thermal infrared sensors, information on emissivity may be derived from spectral reflectance measurements through regression models. In this study, we present relationships derived over bare soils for Landsat 7 – ETM+ sensor. Reflectances in ETM+ channels were obtained from soil spectra (between 0.4 and 13 μm) extracted from the ASTER spectral library and the dataset acquired by Lesaignoux et al. (2013). The best relations were obtained between reflectances in the mid-infrared channels (ETM5 and ETM7) and the thermal infrared channel (ETM6) with correlation coefficients of 0.63 and 0.72 respectively. The relations were mostly generated by the variations of soil reflectances due to changes in soil moisture. Correlations were lower when considering the variations due to soil type.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"6 1","pages":"6937-6940"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relations Between Landsat Spectral Reflectances and Land Surface Emissivity Over Bare Soils\",\"authors\":\"A. Olioso, X. Briottet, S. Fabre, F. Jacob, A. Michel, S. Nativel, V. Rivalland, J. Roujean\",\"doi\":\"10.1109/IGARSS.2019.8899275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land surface emissivity is required for deriving surface temperature from thermal infrared radiances. When using single-channel or two-channel thermal infrared sensors, information on emissivity may be derived from spectral reflectance measurements through regression models. In this study, we present relationships derived over bare soils for Landsat 7 – ETM+ sensor. Reflectances in ETM+ channels were obtained from soil spectra (between 0.4 and 13 μm) extracted from the ASTER spectral library and the dataset acquired by Lesaignoux et al. (2013). The best relations were obtained between reflectances in the mid-infrared channels (ETM5 and ETM7) and the thermal infrared channel (ETM6) with correlation coefficients of 0.63 and 0.72 respectively. The relations were mostly generated by the variations of soil reflectances due to changes in soil moisture. Correlations were lower when considering the variations due to soil type.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"6 1\",\"pages\":\"6937-6940\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8899275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

地表发射率是根据热红外辐射推算地表温度的必要条件。当使用单通道或双通道热红外传感器时,可以通过回归模型从光谱反射率测量中获得发射率信息。在本研究中,我们展示了Landsat 7 - ETM+传感器在裸露土壤上的关系。ETM+通道的反射率由ASTER光谱库和Lesaignoux et al.(2013)获取的数据集提取的土壤光谱(0.4 ~ 13 μm)获得。中红外通道(ETM5和ETM7)与热红外通道(ETM6)的反射率关系最佳,相关系数分别为0.63和0.72。这种关系主要是由土壤水分变化引起的土壤反射率变化引起的。考虑土壤类型差异时,相关性较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relations Between Landsat Spectral Reflectances and Land Surface Emissivity Over Bare Soils
Land surface emissivity is required for deriving surface temperature from thermal infrared radiances. When using single-channel or two-channel thermal infrared sensors, information on emissivity may be derived from spectral reflectance measurements through regression models. In this study, we present relationships derived over bare soils for Landsat 7 – ETM+ sensor. Reflectances in ETM+ channels were obtained from soil spectra (between 0.4 and 13 μm) extracted from the ASTER spectral library and the dataset acquired by Lesaignoux et al. (2013). The best relations were obtained between reflectances in the mid-infrared channels (ETM5 and ETM7) and the thermal infrared channel (ETM6) with correlation coefficients of 0.63 and 0.72 respectively. The relations were mostly generated by the variations of soil reflectances due to changes in soil moisture. Correlations were lower when considering the variations due to soil type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1