{"title":"植物中的细果酸:生物合成、信号传导和胁迫下的作用","authors":"Fatma Nur Koc, Burcu Seckin Dinler","doi":"10.35513/botlit.2022.1.2","DOIUrl":null,"url":null,"abstract":"Plants protect themselves by developing defensive responses against various biotic and abiotic stress factors throughout their lives. As a result, they create a stress response called ʻsystemic acquired resistance’ (SAR) under pathogen infection. Pipecolic acid is one of the critical signalling molecules in regulating systemic acquired resistance, and it is a product of L-lysine metabolism in all organisms. It is synthesised not only by plants but also by microorganisms, animals and fungi. Many studies have been carried out to understand pipecolic acid’s biosynthesis, transport and role in plants under biotic stress. But recent studies report that pipecolic acid also functions as a stress response in plants under abiotic stress. This paper reviews the historical development of studies on pipecolic acid, its biosynthesis, and its function in plants under stress conditions and systemic acquired resistance.","PeriodicalId":55127,"journal":{"name":"GAYANA BOTANICA","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pipecolic acid in plants: biosynthesis, signalling, and role under stress\",\"authors\":\"Fatma Nur Koc, Burcu Seckin Dinler\",\"doi\":\"10.35513/botlit.2022.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants protect themselves by developing defensive responses against various biotic and abiotic stress factors throughout their lives. As a result, they create a stress response called ʻsystemic acquired resistance’ (SAR) under pathogen infection. Pipecolic acid is one of the critical signalling molecules in regulating systemic acquired resistance, and it is a product of L-lysine metabolism in all organisms. It is synthesised not only by plants but also by microorganisms, animals and fungi. Many studies have been carried out to understand pipecolic acid’s biosynthesis, transport and role in plants under biotic stress. But recent studies report that pipecolic acid also functions as a stress response in plants under abiotic stress. This paper reviews the historical development of studies on pipecolic acid, its biosynthesis, and its function in plants under stress conditions and systemic acquired resistance.\",\"PeriodicalId\":55127,\"journal\":{\"name\":\"GAYANA BOTANICA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAYANA BOTANICA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.35513/botlit.2022.1.2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAYANA BOTANICA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.35513/botlit.2022.1.2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Pipecolic acid in plants: biosynthesis, signalling, and role under stress
Plants protect themselves by developing defensive responses against various biotic and abiotic stress factors throughout their lives. As a result, they create a stress response called ʻsystemic acquired resistance’ (SAR) under pathogen infection. Pipecolic acid is one of the critical signalling molecules in regulating systemic acquired resistance, and it is a product of L-lysine metabolism in all organisms. It is synthesised not only by plants but also by microorganisms, animals and fungi. Many studies have been carried out to understand pipecolic acid’s biosynthesis, transport and role in plants under biotic stress. But recent studies report that pipecolic acid also functions as a stress response in plants under abiotic stress. This paper reviews the historical development of studies on pipecolic acid, its biosynthesis, and its function in plants under stress conditions and systemic acquired resistance.
GAYANA BOTANICAAgricultural and Biological Sciences-Plant Science
CiteScore
0.70
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍:
The journal welcomes works carried out by scientists of all nationalities, and may be written in either English or Spanish. The journal receives works in systematic, taxonomy, floristic, ecology, physiology, morphology, development, conservation, cytology and phytochemical botany.