Laura Villanova, P. Falcaro, D. Carta, I. Poli, Rob J Hyndman, K. Smith‐Miles
{"title":"微阵列器件的功能化:使用多目标粒子群和多响应MARS建模的过程优化","authors":"Laura Villanova, P. Falcaro, D. Carta, I. Poli, Rob J Hyndman, K. Smith‐Miles","doi":"10.1109/CEC.2010.5586165","DOIUrl":null,"url":null,"abstract":"An evolutionary approach for the optimization of microarray coatings produced via sol-gel chemistry is presented. The aim of the methodology is to face the challenging aspects of the problem: unknown objective function, high dimensional variable space, constraints on the independent variables, multiple responses, expensive or time-consuming experimental trials, expected complexity of the functional relationships between independent and response variables. The proposed approach iteratively selects a set of experiments by combining a multiob-jective Particle Swarm Optimization (PSO) and a multiresponse Multivariate Adaptive Regression Splines (MARS) model. At each iteration of the algorithm the selected experiments are implemented and evaluated, and the system response is used as a feedback for the selection of the new trials. The performance of the approach is measured in terms of improvements with respect to the best coating obtained changing one variable at a time (the method typically used by scientists). Relevant enhancements have been detected, and the proposed evolutionary approach is shown to be a useful methodology for process optimization with great promise for industrial applications.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"11 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Functionalization of microarray devices: Process optimization using a multiobjective PSO and multiresponse MARS modeling\",\"authors\":\"Laura Villanova, P. Falcaro, D. Carta, I. Poli, Rob J Hyndman, K. Smith‐Miles\",\"doi\":\"10.1109/CEC.2010.5586165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An evolutionary approach for the optimization of microarray coatings produced via sol-gel chemistry is presented. The aim of the methodology is to face the challenging aspects of the problem: unknown objective function, high dimensional variable space, constraints on the independent variables, multiple responses, expensive or time-consuming experimental trials, expected complexity of the functional relationships between independent and response variables. The proposed approach iteratively selects a set of experiments by combining a multiob-jective Particle Swarm Optimization (PSO) and a multiresponse Multivariate Adaptive Regression Splines (MARS) model. At each iteration of the algorithm the selected experiments are implemented and evaluated, and the system response is used as a feedback for the selection of the new trials. The performance of the approach is measured in terms of improvements with respect to the best coating obtained changing one variable at a time (the method typically used by scientists). Relevant enhancements have been detected, and the proposed evolutionary approach is shown to be a useful methodology for process optimization with great promise for industrial applications.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"11 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functionalization of microarray devices: Process optimization using a multiobjective PSO and multiresponse MARS modeling
An evolutionary approach for the optimization of microarray coatings produced via sol-gel chemistry is presented. The aim of the methodology is to face the challenging aspects of the problem: unknown objective function, high dimensional variable space, constraints on the independent variables, multiple responses, expensive or time-consuming experimental trials, expected complexity of the functional relationships between independent and response variables. The proposed approach iteratively selects a set of experiments by combining a multiob-jective Particle Swarm Optimization (PSO) and a multiresponse Multivariate Adaptive Regression Splines (MARS) model. At each iteration of the algorithm the selected experiments are implemented and evaluated, and the system response is used as a feedback for the selection of the new trials. The performance of the approach is measured in terms of improvements with respect to the best coating obtained changing one variable at a time (the method typically used by scientists). Relevant enhancements have been detected, and the proposed evolutionary approach is shown to be a useful methodology for process optimization with great promise for industrial applications.