{"title":"天基AIS的FPGA实现","authors":"M. Adarsh, K. Adithya, Akshay Nimbal","doi":"10.1109/WISPNET.2018.8538703","DOIUrl":null,"url":null,"abstract":"The Automatic Identification System (AIS) is an automated tracking system used for exchanging static and dynamic vessel information between the AIS terminals. Data transmitted by the AIS station is received by other vessel or base station. But due to the range limitations in the ground-based network, we go for Space-based Universal ship-borne Automatic Identification System (S-AIS) wherein the AIS-Data is received by satellite for the global coverage. In this paper, we present the performance analysis of the space-based AIS system considering the Field of View (FoV) of the satellite spanning a large number of Self-Organizing Time Division Multiple Access (SOTDMA) clusters and implementation of AIS Modem using SOTDMA scheme with Gaussian Minimum Shift Keying (GMSK) modulation. The introduction of reconfigurable devices and high level hardware description languages have made the design of AIS modem to be implemented efficiently on Virtex5-xc5vlx110t FPGA. The system is optimized in terms of hardware utilization. The SOTDMA architecture is designed at the Behavioral level of abstraction with constraints as defined by International Telecommunication Union (ITU) and is implemented using Verilog Hardware Description Language (HDL) on the FPGA, GMSK modulator and demodulator is designed in Xilinx System Generator. The SOTDMA architecture implemented is tested by considering multiple users to verify the unique slot allocation within a SOTDMA cluster. The FPGA implementation results are presented.","PeriodicalId":6858,"journal":{"name":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","volume":"15 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"FPGA Implementation of Space-Based AIS\",\"authors\":\"M. Adarsh, K. Adithya, Akshay Nimbal\",\"doi\":\"10.1109/WISPNET.2018.8538703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Automatic Identification System (AIS) is an automated tracking system used for exchanging static and dynamic vessel information between the AIS terminals. Data transmitted by the AIS station is received by other vessel or base station. But due to the range limitations in the ground-based network, we go for Space-based Universal ship-borne Automatic Identification System (S-AIS) wherein the AIS-Data is received by satellite for the global coverage. In this paper, we present the performance analysis of the space-based AIS system considering the Field of View (FoV) of the satellite spanning a large number of Self-Organizing Time Division Multiple Access (SOTDMA) clusters and implementation of AIS Modem using SOTDMA scheme with Gaussian Minimum Shift Keying (GMSK) modulation. The introduction of reconfigurable devices and high level hardware description languages have made the design of AIS modem to be implemented efficiently on Virtex5-xc5vlx110t FPGA. The system is optimized in terms of hardware utilization. The SOTDMA architecture is designed at the Behavioral level of abstraction with constraints as defined by International Telecommunication Union (ITU) and is implemented using Verilog Hardware Description Language (HDL) on the FPGA, GMSK modulator and demodulator is designed in Xilinx System Generator. The SOTDMA architecture implemented is tested by considering multiple users to verify the unique slot allocation within a SOTDMA cluster. The FPGA implementation results are presented.\",\"PeriodicalId\":6858,\"journal\":{\"name\":\"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)\",\"volume\":\"15 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISPNET.2018.8538703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISPNET.2018.8538703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自动识别系统(AIS)是一种自动跟踪系统,用于在AIS终端之间交换静态和动态船舶信息。AIS站发送的数据被其他船只或基站接收。但由于地面网络的范围限制,我们选择了天基通用舰载自动识别系统(S-AIS),其中ais数据由卫星接收,覆盖全球。本文在考虑卫星视场(FoV)跨越大量自组织时分多址(SOTDMA)集群的情况下,对天基AIS系统进行了性能分析,并采用高斯最小移位键控(GMSK)调制的SOTDMA方案实现了AIS调制解调器。引入可重构器件和高级硬件描述语言,使得AIS调制解调器的设计能够在Virtex5-xc5vlx110t FPGA上高效实现。系统在硬件利用率方面进行了优化。SOTDMA架构采用国际电信联盟(ITU)定义的约束在行为抽象层进行设计,在FPGA上使用Verilog硬件描述语言(HDL)实现,GMSK调制器和解调器在Xilinx System Generator中设计。通过考虑多个用户来验证SOTDMA集群内的唯一插槽分配,对实现的SOTDMA体系结构进行了测试。给出了FPGA实现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FPGA Implementation of Space-Based AIS
The Automatic Identification System (AIS) is an automated tracking system used for exchanging static and dynamic vessel information between the AIS terminals. Data transmitted by the AIS station is received by other vessel or base station. But due to the range limitations in the ground-based network, we go for Space-based Universal ship-borne Automatic Identification System (S-AIS) wherein the AIS-Data is received by satellite for the global coverage. In this paper, we present the performance analysis of the space-based AIS system considering the Field of View (FoV) of the satellite spanning a large number of Self-Organizing Time Division Multiple Access (SOTDMA) clusters and implementation of AIS Modem using SOTDMA scheme with Gaussian Minimum Shift Keying (GMSK) modulation. The introduction of reconfigurable devices and high level hardware description languages have made the design of AIS modem to be implemented efficiently on Virtex5-xc5vlx110t FPGA. The system is optimized in terms of hardware utilization. The SOTDMA architecture is designed at the Behavioral level of abstraction with constraints as defined by International Telecommunication Union (ITU) and is implemented using Verilog Hardware Description Language (HDL) on the FPGA, GMSK modulator and demodulator is designed in Xilinx System Generator. The SOTDMA architecture implemented is tested by considering multiple users to verify the unique slot allocation within a SOTDMA cluster. The FPGA implementation results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Reinforcement Learning for the Capacitated Vehicle Routing Problem with Soft Time Window Integrated Interference Solutions Between 5G and Satellite Systems Modulation Recognition Method of MAPSK Signal Artificial Intelligence Routing Method in Wireless Sensor Network for Sewage Treatment Monitoring Electromagnetically Induced Transparency in a Coupled NV Spin-Mechanical Resonator System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1