梁柱的几何非线性稳定性分析

IF 0.9 Q4 ENGINEERING, CIVIL Australian Journal of Structural Engineering Pub Date : 2023-05-17 DOI:10.1080/13287982.2023.2213506
S. Chandra
{"title":"梁柱的几何非线性稳定性分析","authors":"S. Chandra","doi":"10.1080/13287982.2023.2213506","DOIUrl":null,"url":null,"abstract":"ABSTRACT Stiffness properties of structural members, such as beam, plate and shell, can change drastically in the presence of axial forces due to geometric effects of the nonlinear strain components. In this paper, the stability behaviour of beam-column is investigated using the governing differential equation and compared with the geometrically nonlinear finite element analysis. The lateral deflection obtained from the theoretical model matches quite accurately with the numerical values for wide range of axial to critical load ratio P/P cr . It is shown that bending stiffness decreases linearly with the axial load. By extending the theory, an expression for the membrane stiffness of the beam-column is presented in this paper. The geometrically nonlinear finite element analysis can capture exactly the parabolic variation of the membrane stiffness as per the derived expression. It increases initially up to P/P cr  = 0.35 and decreases rapidly to negligible value near the critical load indicating buckling instability.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":"13 1","pages":"342 - 349"},"PeriodicalIF":0.9000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of beam-column by geometrically nonlinear analysis\",\"authors\":\"S. Chandra\",\"doi\":\"10.1080/13287982.2023.2213506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Stiffness properties of structural members, such as beam, plate and shell, can change drastically in the presence of axial forces due to geometric effects of the nonlinear strain components. In this paper, the stability behaviour of beam-column is investigated using the governing differential equation and compared with the geometrically nonlinear finite element analysis. The lateral deflection obtained from the theoretical model matches quite accurately with the numerical values for wide range of axial to critical load ratio P/P cr . It is shown that bending stiffness decreases linearly with the axial load. By extending the theory, an expression for the membrane stiffness of the beam-column is presented in this paper. The geometrically nonlinear finite element analysis can capture exactly the parabolic variation of the membrane stiffness as per the derived expression. It increases initially up to P/P cr  = 0.35 and decreases rapidly to negligible value near the critical load indicating buckling instability.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":\"13 1\",\"pages\":\"342 - 349\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2023.2213506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2023.2213506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

由于非线性应变分量的几何效应,梁、板和壳等结构构件的刚度特性在轴向力作用下会发生剧烈变化。本文利用控制微分方程研究了梁柱的稳定特性,并与几何非线性有限元分析进行了比较。在较宽的轴向-临界载荷比P/P cr范围内,理论模型得到的横向挠度与数值吻合较好。结果表明,弯曲刚度随轴向载荷的增加而线性减小。通过对理论的推广,给出了梁柱膜刚度的表达式。几何非线性有限元分析可以准确地捕捉到膜刚度的抛物线型变化。当P/P cr = 0.35时,该系数开始增大,但在临界载荷附近迅速减小至可忽略不计的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability of beam-column by geometrically nonlinear analysis
ABSTRACT Stiffness properties of structural members, such as beam, plate and shell, can change drastically in the presence of axial forces due to geometric effects of the nonlinear strain components. In this paper, the stability behaviour of beam-column is investigated using the governing differential equation and compared with the geometrically nonlinear finite element analysis. The lateral deflection obtained from the theoretical model matches quite accurately with the numerical values for wide range of axial to critical load ratio P/P cr . It is shown that bending stiffness decreases linearly with the axial load. By extending the theory, an expression for the membrane stiffness of the beam-column is presented in this paper. The geometrically nonlinear finite element analysis can capture exactly the parabolic variation of the membrane stiffness as per the derived expression. It increases initially up to P/P cr  = 0.35 and decreases rapidly to negligible value near the critical load indicating buckling instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
31
期刊介绍: The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.
期刊最新文献
Uncertainty modelling and assessment of shear resistance in reinforced concrete beams without shear reinforcement Seismic isolation effect of tunable friction pendulum system in bridge Seismic performance of cold-formed thin-walled C-shaped steel composite wall with fireproof straw boards cladding Regression models for ultimate hogging moment prediction of composite cellular beams Performance of delaminated CFRP composite under pure bending using two-dimensional digital image correlation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1