{"title":"新紊流法测定垂直折射的应用","authors":"S. Younes","doi":"10.1515/jogs-2020-0125","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the study of new turbulent method technique for the determining of vertical refraction when total stations are used. Required measurement accuracy of vertical refraction by conventional methods is extremely difficult due to rapid random changes in the angle of refraction. Geodetic observations are recommended to performing only during periods of indifferent temperature stratification, while the refraction is close to zero and practically unvaried. However, this period is extremely short and its boundaries are not defined, so the inefficiency of all known methods for determining refraction must be attention. The complete liberation of geodetic observations from the influence of turbulent and fluctuation processes in the atmosphere is possible only by directly measuring the angle of refraction at the time of observation. The creation of electronic total stations with automatic guidance to the target allows to successfully solving the problem of determining refraction by a turbulent method. The aim of this work is to study the new method for determining refraction in a turbulent atmosphere. The measurements are performed with a Trimble total station. The obtained results confirm that the accuracy for determining refraction is ~2″, which almost corresponds to the instrumental accuracy of the device used.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"20 1","pages":"102 - 110"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of new turbulent method for determining vertical refraction\",\"authors\":\"S. Younes\",\"doi\":\"10.1515/jogs-2020-0125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is concerned with the study of new turbulent method technique for the determining of vertical refraction when total stations are used. Required measurement accuracy of vertical refraction by conventional methods is extremely difficult due to rapid random changes in the angle of refraction. Geodetic observations are recommended to performing only during periods of indifferent temperature stratification, while the refraction is close to zero and practically unvaried. However, this period is extremely short and its boundaries are not defined, so the inefficiency of all known methods for determining refraction must be attention. The complete liberation of geodetic observations from the influence of turbulent and fluctuation processes in the atmosphere is possible only by directly measuring the angle of refraction at the time of observation. The creation of electronic total stations with automatic guidance to the target allows to successfully solving the problem of determining refraction by a turbulent method. The aim of this work is to study the new method for determining refraction in a turbulent atmosphere. The measurements are performed with a Trimble total station. The obtained results confirm that the accuracy for determining refraction is ~2″, which almost corresponds to the instrumental accuracy of the device used.\",\"PeriodicalId\":44569,\"journal\":{\"name\":\"Journal of Geodetic Science\",\"volume\":\"20 1\",\"pages\":\"102 - 110\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodetic Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jogs-2020-0125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2020-0125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Application of new turbulent method for determining vertical refraction
Abstract This paper is concerned with the study of new turbulent method technique for the determining of vertical refraction when total stations are used. Required measurement accuracy of vertical refraction by conventional methods is extremely difficult due to rapid random changes in the angle of refraction. Geodetic observations are recommended to performing only during periods of indifferent temperature stratification, while the refraction is close to zero and practically unvaried. However, this period is extremely short and its boundaries are not defined, so the inefficiency of all known methods for determining refraction must be attention. The complete liberation of geodetic observations from the influence of turbulent and fluctuation processes in the atmosphere is possible only by directly measuring the angle of refraction at the time of observation. The creation of electronic total stations with automatic guidance to the target allows to successfully solving the problem of determining refraction by a turbulent method. The aim of this work is to study the new method for determining refraction in a turbulent atmosphere. The measurements are performed with a Trimble total station. The obtained results confirm that the accuracy for determining refraction is ~2″, which almost corresponds to the instrumental accuracy of the device used.