F. Sforazzini, Zhaolin Chen, J. Baran, J. Bradley, Alexandra Carey, N. Shah, G. Egan
{"title":"基于核磁共振的衰减图重新对准和运动校正在同时脑核磁共振pet成像中的应用","authors":"F. Sforazzini, Zhaolin Chen, J. Baran, J. Bradley, Alexandra Carey, N. Shah, G. Egan","doi":"10.1109/ISBI.2017.7950508","DOIUrl":null,"url":null,"abstract":"Head movement is a major issue in dynamic PET imaging. A simultaneous MR-PET scanner is capable of acquiring both MR and PET data concurrently, which enables opportunities to use MR information for PET motion correction. Here we propose an MR-based method to detect head motion and to correct motion artefacts during PET image reconstruction. The method is based on co-registration of multiple MR contrasts to extract motion parameters. The motion parameters are then used to guide the Multiple Acquisition Frame (MAF) algorithm to bin the PET list-mode data into multiple frames whenever significant motion occurs. Furthermore, motion parameters are used to re-align the PET attenuation u-map to each frame prior to the image reconstruction. Finally, PET images are reconstructed for each frame and combined to produce a final image. Using both phantom and in-vivo human data, we show that this method can significantly increase image quality and reduce motion artefacts.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"21 1","pages":"231-234"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MR-based attenuation map re-alignment and motion correction in simultaneous brain MR-PET imaging\",\"authors\":\"F. Sforazzini, Zhaolin Chen, J. Baran, J. Bradley, Alexandra Carey, N. Shah, G. Egan\",\"doi\":\"10.1109/ISBI.2017.7950508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Head movement is a major issue in dynamic PET imaging. A simultaneous MR-PET scanner is capable of acquiring both MR and PET data concurrently, which enables opportunities to use MR information for PET motion correction. Here we propose an MR-based method to detect head motion and to correct motion artefacts during PET image reconstruction. The method is based on co-registration of multiple MR contrasts to extract motion parameters. The motion parameters are then used to guide the Multiple Acquisition Frame (MAF) algorithm to bin the PET list-mode data into multiple frames whenever significant motion occurs. Furthermore, motion parameters are used to re-align the PET attenuation u-map to each frame prior to the image reconstruction. Finally, PET images are reconstructed for each frame and combined to produce a final image. Using both phantom and in-vivo human data, we show that this method can significantly increase image quality and reduce motion artefacts.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":\"21 1\",\"pages\":\"231-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MR-based attenuation map re-alignment and motion correction in simultaneous brain MR-PET imaging
Head movement is a major issue in dynamic PET imaging. A simultaneous MR-PET scanner is capable of acquiring both MR and PET data concurrently, which enables opportunities to use MR information for PET motion correction. Here we propose an MR-based method to detect head motion and to correct motion artefacts during PET image reconstruction. The method is based on co-registration of multiple MR contrasts to extract motion parameters. The motion parameters are then used to guide the Multiple Acquisition Frame (MAF) algorithm to bin the PET list-mode data into multiple frames whenever significant motion occurs. Furthermore, motion parameters are used to re-align the PET attenuation u-map to each frame prior to the image reconstruction. Finally, PET images are reconstructed for each frame and combined to produce a final image. Using both phantom and in-vivo human data, we show that this method can significantly increase image quality and reduce motion artefacts.