真皮-表皮连接处的活体共聚焦显微镜分类

J. Robic, B. Perret, A. Nkengne, M. Couprie, Hugues Talbot
{"title":"真皮-表皮连接处的活体共聚焦显微镜分类","authors":"J. Robic, B. Perret, A. Nkengne, M. Couprie, Hugues Talbot","doi":"10.1109/ISBI.2017.7950513","DOIUrl":null,"url":null,"abstract":"Reflectance confocal microscopy (RCM) is a powerful tool to visualize the skin layers at cellular resolution. The dermal-epidermal junction (DEJ) is a thin complex 3D structure. It appears as a low-contrasted structure in confocal en-face sections, which is difficult to recognize visually, leading to uncertainty in the classification. In this article, we propose an automated method for segmenting the DEJ with reduced uncertainty. The proposed approach relies on a 3D Conditional Random Field to model the skin biological properties and impose regularization constraints. We improve the restitution of the epidermal and dermal labels while reducing the thickness of the uncertainty area in a coherent biological way from 16.9 µm (ground-truth) to 10.3 µm.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"10 1","pages":"252-255"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of the dermal-epidermal junction using in-vivo confocal microscopy\",\"authors\":\"J. Robic, B. Perret, A. Nkengne, M. Couprie, Hugues Talbot\",\"doi\":\"10.1109/ISBI.2017.7950513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reflectance confocal microscopy (RCM) is a powerful tool to visualize the skin layers at cellular resolution. The dermal-epidermal junction (DEJ) is a thin complex 3D structure. It appears as a low-contrasted structure in confocal en-face sections, which is difficult to recognize visually, leading to uncertainty in the classification. In this article, we propose an automated method for segmenting the DEJ with reduced uncertainty. The proposed approach relies on a 3D Conditional Random Field to model the skin biological properties and impose regularization constraints. We improve the restitution of the epidermal and dermal labels while reducing the thickness of the uncertainty area in a coherent biological way from 16.9 µm (ground-truth) to 10.3 µm.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":\"10 1\",\"pages\":\"252-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

反射共聚焦显微镜(RCM)是一个强大的工具,可视化皮肤层在细胞分辨率。真皮-表皮交界处(DEJ)是一个薄而复杂的三维结构。在共聚焦面切面上表现为低对比度结构,视觉上难以识别,导致分类不确定。在本文中,我们提出了一种自动化的方法来分割DEJ与减少不确定性。该方法依赖于三维条件随机场来模拟皮肤生物特性并施加正则化约束。我们改善了表皮和真皮标签的恢复,同时以连贯的生物学方式将不确定区域的厚度从16.9µm(真值)减少到10.3µm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of the dermal-epidermal junction using in-vivo confocal microscopy
Reflectance confocal microscopy (RCM) is a powerful tool to visualize the skin layers at cellular resolution. The dermal-epidermal junction (DEJ) is a thin complex 3D structure. It appears as a low-contrasted structure in confocal en-face sections, which is difficult to recognize visually, leading to uncertainty in the classification. In this article, we propose an automated method for segmenting the DEJ with reduced uncertainty. The proposed approach relies on a 3D Conditional Random Field to model the skin biological properties and impose regularization constraints. We improve the restitution of the epidermal and dermal labels while reducing the thickness of the uncertainty area in a coherent biological way from 16.9 µm (ground-truth) to 10.3 µm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1