基于卷积神经网络的无人机图像快速动物检测

B. Kellenberger, M. Volpi, D. Tuia
{"title":"基于卷积神经网络的无人机图像快速动物检测","authors":"B. Kellenberger, M. Volpi, D. Tuia","doi":"10.1109/IGARSS.2017.8127090","DOIUrl":null,"url":null,"abstract":"Illegal wildlife poaching poses one severe threat to the environment. Measures to stem poaching have only been with limited success, mainly due to efforts required to keep track of wildlife stock and animal tracking. Recent developments in remote sensing have led to low-cost Unmanned Aerial Vehicles (UAVs), facilitating quick and repeated image acquisitions over vast areas. In parallel, progress in object detection in computer vision yielded unprecedented performance improvements, partially attributable to algorithms like Convolutional Neural Networks (CNNs). We present an object detection method tailored to detect large animals in UAV images. We achieve a substantial increase in precision over a robust state-of-the-art model on a dataset acquired over the Kuzikus wildlife reserve park in Namibia. Furthermore, our model processes data at over 72 images per second, as opposed 3 for the baseline, allowing for real-time applications.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"7 1","pages":"866-869"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Fast animal detection in UAV images using convolutional neural networks\",\"authors\":\"B. Kellenberger, M. Volpi, D. Tuia\",\"doi\":\"10.1109/IGARSS.2017.8127090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Illegal wildlife poaching poses one severe threat to the environment. Measures to stem poaching have only been with limited success, mainly due to efforts required to keep track of wildlife stock and animal tracking. Recent developments in remote sensing have led to low-cost Unmanned Aerial Vehicles (UAVs), facilitating quick and repeated image acquisitions over vast areas. In parallel, progress in object detection in computer vision yielded unprecedented performance improvements, partially attributable to algorithms like Convolutional Neural Networks (CNNs). We present an object detection method tailored to detect large animals in UAV images. We achieve a substantial increase in precision over a robust state-of-the-art model on a dataset acquired over the Kuzikus wildlife reserve park in Namibia. Furthermore, our model processes data at over 72 images per second, as opposed 3 for the baseline, allowing for real-time applications.\",\"PeriodicalId\":6466,\"journal\":{\"name\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"7 1\",\"pages\":\"866-869\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2017.8127090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8127090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

非法偷猎野生动物对环境构成严重威胁。阻止偷猎的措施只取得了有限的成功,主要是由于需要努力跟踪野生动物种群和动物追踪。遥感技术的最新发展导致了低成本的无人驾驶飞行器(uav),促进了在广大地区快速和重复的图像采集。与此同时,计算机视觉中物体检测的进展也带来了前所未有的性能提升,这在一定程度上要归功于卷积神经网络(cnn)等算法。我们提出了一种针对无人机图像中大型动物的目标检测方法。在纳米比亚库兹库斯野生动物保护区获得的数据集上,我们实现了精度的大幅提高。此外,我们的模型以每秒72张以上的速度处理数据,而基线为每秒3张,从而允许实时应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast animal detection in UAV images using convolutional neural networks
Illegal wildlife poaching poses one severe threat to the environment. Measures to stem poaching have only been with limited success, mainly due to efforts required to keep track of wildlife stock and animal tracking. Recent developments in remote sensing have led to low-cost Unmanned Aerial Vehicles (UAVs), facilitating quick and repeated image acquisitions over vast areas. In parallel, progress in object detection in computer vision yielded unprecedented performance improvements, partially attributable to algorithms like Convolutional Neural Networks (CNNs). We present an object detection method tailored to detect large animals in UAV images. We achieve a substantial increase in precision over a robust state-of-the-art model on a dataset acquired over the Kuzikus wildlife reserve park in Namibia. Furthermore, our model processes data at over 72 images per second, as opposed 3 for the baseline, allowing for real-time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ongoing Progress Toward NASA's Surface Biology and Geology Mission Sea Surface Salinity Dynamics in the Bohai Sea Using MODIS Data Water Surface Level Monitoring of the Axios River Wetlands, Greece, Using Airborne and Space-Borne Earth Observation Data Selection of the 3-D Shearlet Cubes for Improving Hyperspectral Image Joint Sparse Classification A New Method for Determining Rain Flag of the Sentinel-3 Altimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1