H. Ogino, M. Fujii, W. Satou, Toshikazu Suzuki, E. Michishita, D. Ayusawa
{"title":"含5-溴酸的S/MAR DNA与核基质的结合。","authors":"H. Ogino, M. Fujii, W. Satou, Toshikazu Suzuki, E. Michishita, D. Ayusawa","doi":"10.1093/DNARES/9.1.25","DOIUrl":null,"url":null,"abstract":"Substitution of thymine with 5-bromouracil in DNA is known to change interaction between DNA and proteins, thereby inducing various biological phenomena. We hypothesize that A/T-rich scaffold/nuclear matrix attachment region (S/MAR) sequences are involved in the effects of 5-bromodeoxyuridine. We examined an interaction between DNA containing an intronic S/MAR sequence of the immunoglobulin heavy chain gene and nuclear halos prepared from HeLa cells. Upon substitution with 5-bromouracil, the S/MAR DNA bound more tightly to the nuclear halos. The multi-functional nuclear matrix protein YY1 was also found to bind more strongly to 5-bromouracil-substituted DNA containing its recognition motif. These results are consistent with the above hypothesis.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"160 1","pages":"25-9"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Binding of 5-bromouracil-containing S/MAR DNA to the nuclear matrix.\",\"authors\":\"H. Ogino, M. Fujii, W. Satou, Toshikazu Suzuki, E. Michishita, D. Ayusawa\",\"doi\":\"10.1093/DNARES/9.1.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Substitution of thymine with 5-bromouracil in DNA is known to change interaction between DNA and proteins, thereby inducing various biological phenomena. We hypothesize that A/T-rich scaffold/nuclear matrix attachment region (S/MAR) sequences are involved in the effects of 5-bromodeoxyuridine. We examined an interaction between DNA containing an intronic S/MAR sequence of the immunoglobulin heavy chain gene and nuclear halos prepared from HeLa cells. Upon substitution with 5-bromouracil, the S/MAR DNA bound more tightly to the nuclear halos. The multi-functional nuclear matrix protein YY1 was also found to bind more strongly to 5-bromouracil-substituted DNA containing its recognition motif. These results are consistent with the above hypothesis.\",\"PeriodicalId\":11212,\"journal\":{\"name\":\"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes\",\"volume\":\"160 1\",\"pages\":\"25-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/DNARES/9.1.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/DNARES/9.1.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Binding of 5-bromouracil-containing S/MAR DNA to the nuclear matrix.
Substitution of thymine with 5-bromouracil in DNA is known to change interaction between DNA and proteins, thereby inducing various biological phenomena. We hypothesize that A/T-rich scaffold/nuclear matrix attachment region (S/MAR) sequences are involved in the effects of 5-bromodeoxyuridine. We examined an interaction between DNA containing an intronic S/MAR sequence of the immunoglobulin heavy chain gene and nuclear halos prepared from HeLa cells. Upon substitution with 5-bromouracil, the S/MAR DNA bound more tightly to the nuclear halos. The multi-functional nuclear matrix protein YY1 was also found to bind more strongly to 5-bromouracil-substituted DNA containing its recognition motif. These results are consistent with the above hypothesis.