Rashmi R. Gupta, S. Verma, Vishal Singh, K. Bamzai
{"title":"铌酸铅-锆酸铅-钛酸铅三元体系的制备、结构、电学和铁电性能","authors":"Rashmi R. Gupta, S. Verma, Vishal Singh, K. Bamzai","doi":"10.1155/2015/835150","DOIUrl":null,"url":null,"abstract":"A ternary system of lead niobate–lead zirconate–lead titanate with composition xPN–yPZ–(x-y)PT where and , 0.25, and 0.35 known as PNZT has been prepared by conventional mixed oxide route at a temperature of 1100°C. The formation of the perovskite phase was established by X-ray diffraction analysis. The surface morphology studied by scanning electron microscopy shows the formation of fairly dense grains and elemental composition was confirmed by energy dispersive X-ray analysis. Dielectric properties like dielectric constant and dielectric loss ( and ) indicate poly-dispersive nature of the material. The temperature dependent dielectric constant () curve indicates relaxor behaviour with two dielectric anomalies. The poly-dispersive nature of the material was analysed by Cole-Cole plots. The activation energy follows the Arrhenius law and is found to decrease with increasing frequency for each composition. The frequency dependence of ac conductivity follows the universal power law. The ac conductivity analysis suggests that hopping of charge carriers among the localized sites is responsible for electrical conduction. The ferroelectric studies reveal that these ternary systems are soft ferroelectric.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"12 1","pages":"1-12"},"PeriodicalIF":18.6000,"publicationDate":"2015-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Preparation, Structural, Electrical, and Ferroelectric Properties of Lead Niobate–Lead Zirconate–Lead Titanate Ternary System\",\"authors\":\"Rashmi R. Gupta, S. Verma, Vishal Singh, K. Bamzai\",\"doi\":\"10.1155/2015/835150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A ternary system of lead niobate–lead zirconate–lead titanate with composition xPN–yPZ–(x-y)PT where and , 0.25, and 0.35 known as PNZT has been prepared by conventional mixed oxide route at a temperature of 1100°C. The formation of the perovskite phase was established by X-ray diffraction analysis. The surface morphology studied by scanning electron microscopy shows the formation of fairly dense grains and elemental composition was confirmed by energy dispersive X-ray analysis. Dielectric properties like dielectric constant and dielectric loss ( and ) indicate poly-dispersive nature of the material. The temperature dependent dielectric constant () curve indicates relaxor behaviour with two dielectric anomalies. The poly-dispersive nature of the material was analysed by Cole-Cole plots. The activation energy follows the Arrhenius law and is found to decrease with increasing frequency for each composition. The frequency dependence of ac conductivity follows the universal power law. The ac conductivity analysis suggests that hopping of charge carriers among the localized sites is responsible for electrical conduction. The ferroelectric studies reveal that these ternary systems are soft ferroelectric.\",\"PeriodicalId\":14862,\"journal\":{\"name\":\"Journal of Advanced Ceramics\",\"volume\":\"12 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2015-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/835150\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2015/835150","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Preparation, Structural, Electrical, and Ferroelectric Properties of Lead Niobate–Lead Zirconate–Lead Titanate Ternary System
A ternary system of lead niobate–lead zirconate–lead titanate with composition xPN–yPZ–(x-y)PT where and , 0.25, and 0.35 known as PNZT has been prepared by conventional mixed oxide route at a temperature of 1100°C. The formation of the perovskite phase was established by X-ray diffraction analysis. The surface morphology studied by scanning electron microscopy shows the formation of fairly dense grains and elemental composition was confirmed by energy dispersive X-ray analysis. Dielectric properties like dielectric constant and dielectric loss ( and ) indicate poly-dispersive nature of the material. The temperature dependent dielectric constant () curve indicates relaxor behaviour with two dielectric anomalies. The poly-dispersive nature of the material was analysed by Cole-Cole plots. The activation energy follows the Arrhenius law and is found to decrease with increasing frequency for each composition. The frequency dependence of ac conductivity follows the universal power law. The ac conductivity analysis suggests that hopping of charge carriers among the localized sites is responsible for electrical conduction. The ferroelectric studies reveal that these ternary systems are soft ferroelectric.
期刊介绍:
Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society.
Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.