水力压裂处理和着陆层间隔优化:Eagle Ford案例研究

Abdulrahim K. Al Mulhim, J. Miskimins, A. Tura
{"title":"水力压裂处理和着陆层间隔优化:Eagle Ford案例研究","authors":"Abdulrahim K. Al Mulhim, J. Miskimins, A. Tura","doi":"10.2118/205257-ms","DOIUrl":null,"url":null,"abstract":"\n This paper focuses on optimizing future well landing zones and their corresponding hydraulic fracture treatments in the Eagle Ford shale play. The optimum landing zone and stimulation treatment were determined by analyzing multiple landing zone options, including the lower Austin Chalk, Eagle Ford, and Pepper Shale, with several hydraulic fracturing treatment possibilities. Fracturing fluids and their volume, proppant size, and cluster spacing were investigated to determine the optimum hydraulic fracturing treatment for the subject geologic area. Ranges of 75,000 to 300,000 gallons of pure gel, pure slickwater, and hybrid fracturing fluids along with 20/40, 30/50, 40/70, and 100 mesh proppant were tested. Cluster spacing of twenty feet to eighty feet were also sensitized in this study.\n A fully three-dimensional hydraulic fracture modeling software was used to develop a geological and geomechanical model of the studied area. The generated model was calibrated with available field data to ensure that the model reflects the area's geological and geomechanical characteristics. The developed model was used to create fracture results for each sensitized parameter. Production analysis was performed for all fracture models to determine the optimum landing zone and fracturing treatment implications.\n The study shows that the Eagle Ford had better production than the lower Austin Chalk in the subject area. The Pepper Shale had the highest potential hydrocarbon production, around 326 Mbbl cumulative, when fractured with a pure gel treatment. The analyses showed that a hybrid treatment with 70% gel and 30% slickwater yielded the optimum production due to the treatment economics even though the highest production was obtained using the pure gel. Treating the formation with larger proppant provided better production than smaller proppant due to conductivity concerns associated with damaging mechanisms in the studied area. Since increasing the volume above 175,000 gallons caused a negligible increase in the production, 175,000 gallons of fracturing fluid per stage appeared to be the optimum fracturing fluid volume. Thirty-foot cluster spacing was the optimum spacing in the study area. Overall, the study suggests that oil production can be improved in the Eagle Ford study area through a detailed workflow development and optimization process.\n The hydraulic fracture treatment and landing zone optimization workflow ensures optimum hydrocarbon extraction from the study area. The developed workflow can be applied to new unconventional plays instead of using trial and error methods.","PeriodicalId":10917,"journal":{"name":"Day 2 Wed, January 12, 2022","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hydraulic Fracture Treatment and Landing Zone Interval Optimization: An Eagle Ford Case Study\",\"authors\":\"Abdulrahim K. Al Mulhim, J. Miskimins, A. Tura\",\"doi\":\"10.2118/205257-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper focuses on optimizing future well landing zones and their corresponding hydraulic fracture treatments in the Eagle Ford shale play. The optimum landing zone and stimulation treatment were determined by analyzing multiple landing zone options, including the lower Austin Chalk, Eagle Ford, and Pepper Shale, with several hydraulic fracturing treatment possibilities. Fracturing fluids and their volume, proppant size, and cluster spacing were investigated to determine the optimum hydraulic fracturing treatment for the subject geologic area. Ranges of 75,000 to 300,000 gallons of pure gel, pure slickwater, and hybrid fracturing fluids along with 20/40, 30/50, 40/70, and 100 mesh proppant were tested. Cluster spacing of twenty feet to eighty feet were also sensitized in this study.\\n A fully three-dimensional hydraulic fracture modeling software was used to develop a geological and geomechanical model of the studied area. The generated model was calibrated with available field data to ensure that the model reflects the area's geological and geomechanical characteristics. The developed model was used to create fracture results for each sensitized parameter. Production analysis was performed for all fracture models to determine the optimum landing zone and fracturing treatment implications.\\n The study shows that the Eagle Ford had better production than the lower Austin Chalk in the subject area. The Pepper Shale had the highest potential hydrocarbon production, around 326 Mbbl cumulative, when fractured with a pure gel treatment. The analyses showed that a hybrid treatment with 70% gel and 30% slickwater yielded the optimum production due to the treatment economics even though the highest production was obtained using the pure gel. Treating the formation with larger proppant provided better production than smaller proppant due to conductivity concerns associated with damaging mechanisms in the studied area. Since increasing the volume above 175,000 gallons caused a negligible increase in the production, 175,000 gallons of fracturing fluid per stage appeared to be the optimum fracturing fluid volume. Thirty-foot cluster spacing was the optimum spacing in the study area. Overall, the study suggests that oil production can be improved in the Eagle Ford study area through a detailed workflow development and optimization process.\\n The hydraulic fracture treatment and landing zone optimization workflow ensures optimum hydrocarbon extraction from the study area. The developed workflow can be applied to new unconventional plays instead of using trial and error methods.\",\"PeriodicalId\":10917,\"journal\":{\"name\":\"Day 2 Wed, January 12, 2022\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, January 12, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205257-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, January 12, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205257-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的重点是优化Eagle Ford页岩区未来的井落层及其相应的水力压裂处理。通过分析多个着陆层方案,包括Austin Chalk、Eagle Ford和Pepper页岩,以及几种水力压裂方案,确定了最佳着陆层和增产措施。研究了压裂液及其体积、支撑剂尺寸和簇间距,以确定该地质区域的最佳水力压裂处理方案。测试了75000 ~ 300000加仑的纯凝胶、纯滑溜水和混合压裂液,以及20/40、30/50、40/70和100目支撑剂。在本研究中,簇间距为20英尺至80英尺也被敏感化。利用全三维水力裂缝建模软件建立了研究区地质和地质力学模型。生成的模型使用现有的现场数据进行校准,以确保模型反映该地区的地质和地质力学特征。开发的模型用于创建每个敏化参数的压裂结果。对所有裂缝模型进行了生产分析,以确定最佳着陆层和压裂处理方案。研究表明,在研究区域,Eagle Ford的产量优于Austin Chalk的产量。当采用纯凝胶压裂时,Pepper页岩的潜在油气产量最高,累计产量约为3.26亿桶。分析表明,尽管使用纯凝胶获得了最高产量,但70%凝胶和30%滑溜水的混合处理由于处理经济性而获得了最佳产量。考虑到研究区域的导电性和破坏机制,使用较大的支撑剂处理地层比使用较小的支撑剂提供了更好的产量。由于将体积增加到17.5万加仑以上对产量的影响可以忽略不计,因此每级17.5万加仑的压裂液似乎是最佳的压裂液体积。30英尺的簇间距是研究区的最佳簇间距。总的来说,研究表明Eagle Ford研究区可以通过详细的工作流程开发和优化过程来提高石油产量。水力压裂处理和着陆层优化工作流程确保了研究区域的最佳油气开采。开发的工作流程可以应用于新的非常规油气藏,而不是使用反复试验的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydraulic Fracture Treatment and Landing Zone Interval Optimization: An Eagle Ford Case Study
This paper focuses on optimizing future well landing zones and their corresponding hydraulic fracture treatments in the Eagle Ford shale play. The optimum landing zone and stimulation treatment were determined by analyzing multiple landing zone options, including the lower Austin Chalk, Eagle Ford, and Pepper Shale, with several hydraulic fracturing treatment possibilities. Fracturing fluids and their volume, proppant size, and cluster spacing were investigated to determine the optimum hydraulic fracturing treatment for the subject geologic area. Ranges of 75,000 to 300,000 gallons of pure gel, pure slickwater, and hybrid fracturing fluids along with 20/40, 30/50, 40/70, and 100 mesh proppant were tested. Cluster spacing of twenty feet to eighty feet were also sensitized in this study. A fully three-dimensional hydraulic fracture modeling software was used to develop a geological and geomechanical model of the studied area. The generated model was calibrated with available field data to ensure that the model reflects the area's geological and geomechanical characteristics. The developed model was used to create fracture results for each sensitized parameter. Production analysis was performed for all fracture models to determine the optimum landing zone and fracturing treatment implications. The study shows that the Eagle Ford had better production than the lower Austin Chalk in the subject area. The Pepper Shale had the highest potential hydrocarbon production, around 326 Mbbl cumulative, when fractured with a pure gel treatment. The analyses showed that a hybrid treatment with 70% gel and 30% slickwater yielded the optimum production due to the treatment economics even though the highest production was obtained using the pure gel. Treating the formation with larger proppant provided better production than smaller proppant due to conductivity concerns associated with damaging mechanisms in the studied area. Since increasing the volume above 175,000 gallons caused a negligible increase in the production, 175,000 gallons of fracturing fluid per stage appeared to be the optimum fracturing fluid volume. Thirty-foot cluster spacing was the optimum spacing in the study area. Overall, the study suggests that oil production can be improved in the Eagle Ford study area through a detailed workflow development and optimization process. The hydraulic fracture treatment and landing zone optimization workflow ensures optimum hydrocarbon extraction from the study area. The developed workflow can be applied to new unconventional plays instead of using trial and error methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The First Behind-Casing Fiber-Optic Installation in a High-Pressure High-Temperature Deep Gas Well in Oman Achieving Productivity and Clean Inflow from an Unconventional Reservoir in North Kuwait Track Fractured Well Inflow Performance Using Historic Production Logging and Surface Well Performance Data in Sultanate of Oman Integrated Hydraulic Fracture Geometry Evaluation Based on Pre-Cambrian Tight Silicylate Reservoir in South Oman Salt Basin Case Study of Condensate Dropout Effect in Unconventional Gas/Condensate Reservoirs with Hydraulically Fractured Wells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1