利用深度学习在社交网络中发现社区以实现影响力最大化

S. Mishra, Rajendra Kumar Dwivedi
{"title":"利用深度学习在社交网络中发现社区以实现影响力最大化","authors":"S. Mishra, Rajendra Kumar Dwivedi","doi":"10.1109/IDCIoT56793.2023.10053447","DOIUrl":null,"url":null,"abstract":"Groups play a crucial role in affecting decisions of individuals who are part of the group. When it comes to social networks the group here may be small with some 10-15 members or very big contacting more than 100 members. Thus, there is high possibility of individuals belonging to one or more groups in social networks. It thus becomes important to activate influential members of a group to ensure maximum information propagation. This work proposes a community-based seed selection algorithm. The communities are first identified node embedding which performs graph clustering. After which proportionate distribution of seed nodes is carried out to ensure fair selection. Mapping node features to lower dimensional space and similar nodes getting placed closer to each other proves a better technique for community detection and is also expandable if new nodes get introduced in the network.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"21 1","pages":"377-382"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Deep Learning to Spot Communities for Influence Maximization in Social Networks\",\"authors\":\"S. Mishra, Rajendra Kumar Dwivedi\",\"doi\":\"10.1109/IDCIoT56793.2023.10053447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Groups play a crucial role in affecting decisions of individuals who are part of the group. When it comes to social networks the group here may be small with some 10-15 members or very big contacting more than 100 members. Thus, there is high possibility of individuals belonging to one or more groups in social networks. It thus becomes important to activate influential members of a group to ensure maximum information propagation. This work proposes a community-based seed selection algorithm. The communities are first identified node embedding which performs graph clustering. After which proportionate distribution of seed nodes is carried out to ensure fair selection. Mapping node features to lower dimensional space and similar nodes getting placed closer to each other proves a better technique for community detection and is also expandable if new nodes get introduced in the network.\",\"PeriodicalId\":60583,\"journal\":{\"name\":\"物联网技术\",\"volume\":\"21 1\",\"pages\":\"377-382\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物联网技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/IDCIoT56793.2023.10053447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

群体在影响作为群体一部分的个人的决策方面起着至关重要的作用。当涉及到社交网络时,这里的小组可能很小,只有10-15个成员,也可能很大,有100多个成员。因此,个人在社交网络中属于一个或多个群体的可能性很高。因此,激活一个群体中有影响力的成员以确保信息的最大传播就变得非常重要。本文提出了一种基于社区的种子选择算法。首先通过节点嵌入识别社区,然后进行图聚类。然后按比例分配种子节点,确保公平选择。将节点特征映射到低维空间,并将相似的节点放置在彼此更近的位置,证明了一种更好的社区检测技术,并且在网络中引入新节点时也可以扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging Deep Learning to Spot Communities for Influence Maximization in Social Networks
Groups play a crucial role in affecting decisions of individuals who are part of the group. When it comes to social networks the group here may be small with some 10-15 members or very big contacting more than 100 members. Thus, there is high possibility of individuals belonging to one or more groups in social networks. It thus becomes important to activate influential members of a group to ensure maximum information propagation. This work proposes a community-based seed selection algorithm. The communities are first identified node embedding which performs graph clustering. After which proportionate distribution of seed nodes is carried out to ensure fair selection. Mapping node features to lower dimensional space and similar nodes getting placed closer to each other proves a better technique for community detection and is also expandable if new nodes get introduced in the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5689
期刊最新文献
Circumvolution of Centre Pixel Algorithm in Pixel Value Differencing Steganography Model in the Spatial Domain Prevention of Aflatoxin in Peanut Using Naive Bayes Model Smart Energy Meter and Monitoring System using Internet of Things (IoT) Maximizing the Net Present Value of Resource-Constrained Project Scheduling Problems using Recurrent Neural Network with Genetic Algorithm Framework for Implementation of Personality Inventory Model on Natural Language Processing with Personality Traits Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1