{"title":"钢表面光学薄层的太赫兹无损厚度表征","authors":"Min Zhai, A. Locquet, C. Roquelet, D. Citrin","doi":"10.1109/irmmw-thz.2019.8874181","DOIUrl":null,"url":null,"abstract":"Terahertz imaging is a relatively new technique for nondestructive evaluation. Compared with the destructive micro-cut technique that provides information along the line of cut only, THz imaging nondestructively provides a global mapping of a sample. Hence, this technique has been applied to characterize coated materials and composite laminates. In this work, we characterize optically thin wüstite layers on steel leveraging signal-processing techniques.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"1 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Terahertz Non-Destructive Thickness Characterization of Optically Thin Scale Layers on Steel\",\"authors\":\"Min Zhai, A. Locquet, C. Roquelet, D. Citrin\",\"doi\":\"10.1109/irmmw-thz.2019.8874181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terahertz imaging is a relatively new technique for nondestructive evaluation. Compared with the destructive micro-cut technique that provides information along the line of cut only, THz imaging nondestructively provides a global mapping of a sample. Hence, this technique has been applied to characterize coated materials and composite laminates. In this work, we characterize optically thin wüstite layers on steel leveraging signal-processing techniques.\",\"PeriodicalId\":6686,\"journal\":{\"name\":\"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)\",\"volume\":\"1 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/irmmw-thz.2019.8874181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/irmmw-thz.2019.8874181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Terahertz Non-Destructive Thickness Characterization of Optically Thin Scale Layers on Steel
Terahertz imaging is a relatively new technique for nondestructive evaluation. Compared with the destructive micro-cut technique that provides information along the line of cut only, THz imaging nondestructively provides a global mapping of a sample. Hence, this technique has been applied to characterize coated materials and composite laminates. In this work, we characterize optically thin wüstite layers on steel leveraging signal-processing techniques.