PPGMMGA投影子空间上的模态聚类

Pub Date : 2022-04-14 DOI:10.1111/anzs.12360
Luca Scrucca
{"title":"PPGMMGA投影子空间上的模态聚类","authors":"Luca Scrucca","doi":"10.1111/anzs.12360","DOIUrl":null,"url":null,"abstract":"<p>PPGMMGA is a projection pursuit (PP) algorithm aimed at detecting and visualising clustering structures in multivariate data. The algorithm uses the negentropy as PP index obtained by fitting Gaussian mixture models (GMMs) for density estimation and, then, exploits genetic algorithms (GAs) for its optimisation. Since the PPGMMGA algorithm is a dimension reduction technique specifically introduced for visualisation purposes, cluster memberships are not explicitly provided. In this paper a modal clustering approach is proposed for estimating clusters of projected data points. In particular, a modal EM algorithm is employed to estimate the modes corresponding to the local maxima in the projection subspace of the underlying density estimated using parsimonious GMMs. Data points are then clustered according to the domain of attraction of the identified modes. Simulated and real data are discussed to illustrate the proposed method and evaluate the clustering performance.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12360","citationCount":"1","resultStr":"{\"title\":\"Modal clustering on PPGMMGA projection subspace\",\"authors\":\"Luca Scrucca\",\"doi\":\"10.1111/anzs.12360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>PPGMMGA is a projection pursuit (PP) algorithm aimed at detecting and visualising clustering structures in multivariate data. The algorithm uses the negentropy as PP index obtained by fitting Gaussian mixture models (GMMs) for density estimation and, then, exploits genetic algorithms (GAs) for its optimisation. Since the PPGMMGA algorithm is a dimension reduction technique specifically introduced for visualisation purposes, cluster memberships are not explicitly provided. In this paper a modal clustering approach is proposed for estimating clusters of projected data points. In particular, a modal EM algorithm is employed to estimate the modes corresponding to the local maxima in the projection subspace of the underlying density estimated using parsimonious GMMs. Data points are then clustered according to the domain of attraction of the identified modes. Simulated and real data are discussed to illustrate the proposed method and evaluate the clustering performance.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12360\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

PPGMMGA是一种投影寻踪算法,旨在检测和可视化多变量数据中的聚类结构。该算法使用通过拟合高斯混合模型(GMMs)获得的负熵作为PP指数进行密度估计,然后利用遗传算法(GAs)进行优化。由于PPGMMGA算法是一种专门为可视化目的引入的降维技术,因此没有明确提供集群成员关系。本文提出了一种估计投影数据点聚类的模态聚类方法。特别地,使用模态EM算法来估计使用简约GMMs估计的底层密度的投影子空间中的局部最大值对应的模态。然后根据识别模式的吸引域对数据点进行聚类。通过仿真数据和真实数据对该方法进行了验证,并对聚类性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Modal clustering on PPGMMGA projection subspace

PPGMMGA is a projection pursuit (PP) algorithm aimed at detecting and visualising clustering structures in multivariate data. The algorithm uses the negentropy as PP index obtained by fitting Gaussian mixture models (GMMs) for density estimation and, then, exploits genetic algorithms (GAs) for its optimisation. Since the PPGMMGA algorithm is a dimension reduction technique specifically introduced for visualisation purposes, cluster memberships are not explicitly provided. In this paper a modal clustering approach is proposed for estimating clusters of projected data points. In particular, a modal EM algorithm is employed to estimate the modes corresponding to the local maxima in the projection subspace of the underlying density estimated using parsimonious GMMs. Data points are then clustered according to the domain of attraction of the identified modes. Simulated and real data are discussed to illustrate the proposed method and evaluate the clustering performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1