Md. Milon Islam , Md. Zabirul Islam , Amanullah Asraf , Mabrook S. Al-Rakhami , Weiping Ding , Ali Hassan Sodhro
{"title":"结合CNN-RNN架构和迁移学习的x射线COVID-19诊断","authors":"Md. Milon Islam , Md. Zabirul Islam , Amanullah Asraf , Mabrook S. Al-Rakhami , Weiping Ding , Ali Hassan Sodhro","doi":"10.1016/j.tbench.2023.100088","DOIUrl":null,"url":null,"abstract":"<div><p>Combating the COVID-19 pandemic has emerged as one of the most promising issues in global healthcare. Accurate and fast diagnosis of COVID-19 cases is required for the right medical treatment to control this pandemic. Chest radiography imaging techniques are more effective than the reverse-transcription polymerase chain reaction (RT-PCR) method in detecting coronavirus. Due to the limited availability of medical images, transfer learning is better suited to classify patterns in medical images. This paper presents a combined architecture of convolutional neural network (CNN) and recurrent neural network (RNN) to diagnose COVID-19 patients from chest X-rays. The deep transfer techniques used in this experiment are VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2, where CNN is used to extract complex features from samples and classify them using RNN. In our experiments, the VGG19-RNN architecture outperformed all other networks in terms of accuracy. Finally, decision-making regions of images were visualized using gradient-weighted class activation mapping (Grad-CAM). The system achieved promising results compared to other existing systems and might be validated in the future when more samples would be available. The experiment demonstrated a good alternative method to diagnose COVID-19 for medical staff.</p><p>All the data used during the study are openly available from the Mendeley data repository at <span>https://data.mendeley.com/datasets/mxc6vb7svm</span><svg><path></path></svg>. For further research, we have made the source code publicly available at <span>https://github.com/Asraf047/COVID19-CNN-RNN</span><svg><path></path></svg>.</p></div>","PeriodicalId":100155,"journal":{"name":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","volume":"2 4","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772485923000054/pdfft?md5=b7e11074cc12a010ea7f32743ca0e2a5&pid=1-s2.0-S2772485923000054-main.pdf","citationCount":"73","resultStr":"{\"title\":\"Diagnosis of COVID-19 from X-rays using combined CNN-RNN architecture with transfer learning\",\"authors\":\"Md. Milon Islam , Md. Zabirul Islam , Amanullah Asraf , Mabrook S. Al-Rakhami , Weiping Ding , Ali Hassan Sodhro\",\"doi\":\"10.1016/j.tbench.2023.100088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Combating the COVID-19 pandemic has emerged as one of the most promising issues in global healthcare. Accurate and fast diagnosis of COVID-19 cases is required for the right medical treatment to control this pandemic. Chest radiography imaging techniques are more effective than the reverse-transcription polymerase chain reaction (RT-PCR) method in detecting coronavirus. Due to the limited availability of medical images, transfer learning is better suited to classify patterns in medical images. This paper presents a combined architecture of convolutional neural network (CNN) and recurrent neural network (RNN) to diagnose COVID-19 patients from chest X-rays. The deep transfer techniques used in this experiment are VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2, where CNN is used to extract complex features from samples and classify them using RNN. In our experiments, the VGG19-RNN architecture outperformed all other networks in terms of accuracy. Finally, decision-making regions of images were visualized using gradient-weighted class activation mapping (Grad-CAM). The system achieved promising results compared to other existing systems and might be validated in the future when more samples would be available. The experiment demonstrated a good alternative method to diagnose COVID-19 for medical staff.</p><p>All the data used during the study are openly available from the Mendeley data repository at <span>https://data.mendeley.com/datasets/mxc6vb7svm</span><svg><path></path></svg>. For further research, we have made the source code publicly available at <span>https://github.com/Asraf047/COVID19-CNN-RNN</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":100155,\"journal\":{\"name\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"volume\":\"2 4\",\"pages\":\"Article 100088\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772485923000054/pdfft?md5=b7e11074cc12a010ea7f32743ca0e2a5&pid=1-s2.0-S2772485923000054-main.pdf\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772485923000054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772485923000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diagnosis of COVID-19 from X-rays using combined CNN-RNN architecture with transfer learning
Combating the COVID-19 pandemic has emerged as one of the most promising issues in global healthcare. Accurate and fast diagnosis of COVID-19 cases is required for the right medical treatment to control this pandemic. Chest radiography imaging techniques are more effective than the reverse-transcription polymerase chain reaction (RT-PCR) method in detecting coronavirus. Due to the limited availability of medical images, transfer learning is better suited to classify patterns in medical images. This paper presents a combined architecture of convolutional neural network (CNN) and recurrent neural network (RNN) to diagnose COVID-19 patients from chest X-rays. The deep transfer techniques used in this experiment are VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2, where CNN is used to extract complex features from samples and classify them using RNN. In our experiments, the VGG19-RNN architecture outperformed all other networks in terms of accuracy. Finally, decision-making regions of images were visualized using gradient-weighted class activation mapping (Grad-CAM). The system achieved promising results compared to other existing systems and might be validated in the future when more samples would be available. The experiment demonstrated a good alternative method to diagnose COVID-19 for medical staff.
All the data used during the study are openly available from the Mendeley data repository at https://data.mendeley.com/datasets/mxc6vb7svm. For further research, we have made the source code publicly available at https://github.com/Asraf047/COVID19-CNN-RNN.