{"title":"基于时间逻辑规范的路网最小违例规划","authors":"Jana Tumova, S. Karaman, C. Belta, D. Rus","doi":"10.1109/ICCPS.2016.7479106","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of automated plan synthesis for a vehicle operating in a road network, which is modeled as a weighted transition system. The vehicle is assigned a set of demands, each of which involves a task specification in the form of a syntactically co-safe LTL formula, a deadline for achieving this task, and a demand priority. The demands arrive gradually, upon the run of the vehicle, and hence periodical replanning is needed. We particularly focus on cases, where all tasks cannot be accomplished within the desired deadlines and propose several different ways to measure the degree of demand violation that take into account the demand priorities. We develop a general solution to the problem of least-violating planning and replanning based on a translation to linear programming problem. Furthermore, for a particular subclass of demands, we provide a more efficient solution based on graph search algorithms. The benefits of the approach are demonstrated through illustrative simulations inspired by mobility-on-demand scenarios.","PeriodicalId":6619,"journal":{"name":"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)","volume":"15 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Least-Violating Planning in Road Networks from Temporal Logic Specifications\",\"authors\":\"Jana Tumova, S. Karaman, C. Belta, D. Rus\",\"doi\":\"10.1109/ICCPS.2016.7479106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of automated plan synthesis for a vehicle operating in a road network, which is modeled as a weighted transition system. The vehicle is assigned a set of demands, each of which involves a task specification in the form of a syntactically co-safe LTL formula, a deadline for achieving this task, and a demand priority. The demands arrive gradually, upon the run of the vehicle, and hence periodical replanning is needed. We particularly focus on cases, where all tasks cannot be accomplished within the desired deadlines and propose several different ways to measure the degree of demand violation that take into account the demand priorities. We develop a general solution to the problem of least-violating planning and replanning based on a translation to linear programming problem. Furthermore, for a particular subclass of demands, we provide a more efficient solution based on graph search algorithms. The benefits of the approach are demonstrated through illustrative simulations inspired by mobility-on-demand scenarios.\",\"PeriodicalId\":6619,\"journal\":{\"name\":\"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"15 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPS.2016.7479106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2016.7479106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Least-Violating Planning in Road Networks from Temporal Logic Specifications
In this paper, we consider the problem of automated plan synthesis for a vehicle operating in a road network, which is modeled as a weighted transition system. The vehicle is assigned a set of demands, each of which involves a task specification in the form of a syntactically co-safe LTL formula, a deadline for achieving this task, and a demand priority. The demands arrive gradually, upon the run of the vehicle, and hence periodical replanning is needed. We particularly focus on cases, where all tasks cannot be accomplished within the desired deadlines and propose several different ways to measure the degree of demand violation that take into account the demand priorities. We develop a general solution to the problem of least-violating planning and replanning based on a translation to linear programming problem. Furthermore, for a particular subclass of demands, we provide a more efficient solution based on graph search algorithms. The benefits of the approach are demonstrated through illustrative simulations inspired by mobility-on-demand scenarios.