{"title":"具有周期密度脉动的激光束与等离子体相互作用中的相对论性自聚焦","authors":"Geng Zhang, Qiuqun Liang, Xiongping Xia","doi":"10.1017/s0263034620000300","DOIUrl":null,"url":null,"abstract":"In the paper, relativistic self-focusing in the interaction of laser beam and plasma with periodical density ripple has been studied by the applied WKB approximation and higher-order paraxial theory. The result shows that under the influence of relativistic nonlinear effect, the dielectric function shows the fierce oscillational variation with similar periodicity, which then leads to the intense relativistic beam self-focusing along the propagation distance, such self-focusing also presents similar periodic variation. Besides, in the plasma with periodical density ripple, the initial density and the density ripple amplitude have obvious influence on self-focusing. When the two factors increase, then there will be more strength self-focusing. Choosing the appropriate initial density and the periodic density parameter is benefit to the formation of the more stable self-focusing.","PeriodicalId":49925,"journal":{"name":"Laser and Particle Beams","volume":"13 1","pages":"244-250"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relativistic self-focusing in the interaction of laser beam and plasma with periodical density ripple\",\"authors\":\"Geng Zhang, Qiuqun Liang, Xiongping Xia\",\"doi\":\"10.1017/s0263034620000300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, relativistic self-focusing in the interaction of laser beam and plasma with periodical density ripple has been studied by the applied WKB approximation and higher-order paraxial theory. The result shows that under the influence of relativistic nonlinear effect, the dielectric function shows the fierce oscillational variation with similar periodicity, which then leads to the intense relativistic beam self-focusing along the propagation distance, such self-focusing also presents similar periodic variation. Besides, in the plasma with periodical density ripple, the initial density and the density ripple amplitude have obvious influence on self-focusing. When the two factors increase, then there will be more strength self-focusing. Choosing the appropriate initial density and the periodic density parameter is benefit to the formation of the more stable self-focusing.\",\"PeriodicalId\":49925,\"journal\":{\"name\":\"Laser and Particle Beams\",\"volume\":\"13 1\",\"pages\":\"244-250\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser and Particle Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263034620000300\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser and Particle Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0263034620000300","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Relativistic self-focusing in the interaction of laser beam and plasma with periodical density ripple
In the paper, relativistic self-focusing in the interaction of laser beam and plasma with periodical density ripple has been studied by the applied WKB approximation and higher-order paraxial theory. The result shows that under the influence of relativistic nonlinear effect, the dielectric function shows the fierce oscillational variation with similar periodicity, which then leads to the intense relativistic beam self-focusing along the propagation distance, such self-focusing also presents similar periodic variation. Besides, in the plasma with periodical density ripple, the initial density and the density ripple amplitude have obvious influence on self-focusing. When the two factors increase, then there will be more strength self-focusing. Choosing the appropriate initial density and the periodic density parameter is benefit to the formation of the more stable self-focusing.
期刊介绍:
Laser and Particle Beams is an international journal which deals with basic physics issues of intense laser and particle beams, and the interaction of these beams with matter. Research on pulse power technology associated with beam generation is also of strong interest. Subjects covered include the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology.