R. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, Stephanie Weirich
{"title":"具有重叠方程的闭型族","authors":"R. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, Stephanie Weirich","doi":"10.1145/2535838.2535856","DOIUrl":null,"url":null,"abstract":"Open, type-level functions are a recent innovation in Haskell that move Haskell towards the expressiveness of dependent types, while retaining the look and feel of a practical programming language. This paper shows how to increase expressiveness still further, by adding closed type functions whose equations may overlap, and may have non-linear patterns over an open type universe. Although practically useful and simple to implement, these features go beyond conventional dependent type theory in some respects, and have a subtle metatheory.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"Closed type families with overlapping equations\",\"authors\":\"R. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, Stephanie Weirich\",\"doi\":\"10.1145/2535838.2535856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open, type-level functions are a recent innovation in Haskell that move Haskell towards the expressiveness of dependent types, while retaining the look and feel of a practical programming language. This paper shows how to increase expressiveness still further, by adding closed type functions whose equations may overlap, and may have non-linear patterns over an open type universe. Although practically useful and simple to implement, these features go beyond conventional dependent type theory in some respects, and have a subtle metatheory.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535838.2535856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Open, type-level functions are a recent innovation in Haskell that move Haskell towards the expressiveness of dependent types, while retaining the look and feel of a practical programming language. This paper shows how to increase expressiveness still further, by adding closed type functions whose equations may overlap, and may have non-linear patterns over an open type universe. Although practically useful and simple to implement, these features go beyond conventional dependent type theory in some respects, and have a subtle metatheory.