{"title":"在操作环境中使用多模式交互提高取放性能","authors":"Xinwei Guo, Yang Chen","doi":"10.1108/ir-10-2022-0260","DOIUrl":null,"url":null,"abstract":"\nPurpose\nCurrently, the vision and depth information obtained from the eye-to-hand RGB-D camera can apply to the reconstruction of the three-dimensional (3D) environment for a robotic operation workspace. The reconstructed 3D space contributes to a symmetrical and equal observation view for robots and humans, which can be considered a digital twin (DT) environment. The purpose of this study is to enhance the robot skill in the physical workspace, although the artificial intelligence (AI) technique has high performance of the robotic operation in the known environments.\n\n\nDesign/methodology/approach\nA multimodal interaction framework is proposed in DT operation environments.\n\n\nFindings\nA fast image-based target segmentation technique is combined in the 3D reconstruction of the robotic operation environment from the eye-to-hand camera, thus expediting the 3D DT environment generation without accuracy loss. A multimodal interaction interface is integrated into the DT environment.\n\n\nOriginality/value\nThe users are supported to operate the virtual objects in the DT environment using speech, mouse and keyboard simultaneously. The humans’ operations in 3D DT virtual space are recorded, and cues are provided for the robot’s operations in practice.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhance pick-and-place performance using multimodal interaction in operation environment\",\"authors\":\"Xinwei Guo, Yang Chen\",\"doi\":\"10.1108/ir-10-2022-0260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nCurrently, the vision and depth information obtained from the eye-to-hand RGB-D camera can apply to the reconstruction of the three-dimensional (3D) environment for a robotic operation workspace. The reconstructed 3D space contributes to a symmetrical and equal observation view for robots and humans, which can be considered a digital twin (DT) environment. The purpose of this study is to enhance the robot skill in the physical workspace, although the artificial intelligence (AI) technique has high performance of the robotic operation in the known environments.\\n\\n\\nDesign/methodology/approach\\nA multimodal interaction framework is proposed in DT operation environments.\\n\\n\\nFindings\\nA fast image-based target segmentation technique is combined in the 3D reconstruction of the robotic operation environment from the eye-to-hand camera, thus expediting the 3D DT environment generation without accuracy loss. A multimodal interaction interface is integrated into the DT environment.\\n\\n\\nOriginality/value\\nThe users are supported to operate the virtual objects in the DT environment using speech, mouse and keyboard simultaneously. The humans’ operations in 3D DT virtual space are recorded, and cues are provided for the robot’s operations in practice.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-10-2022-0260\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-10-2022-0260","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Enhance pick-and-place performance using multimodal interaction in operation environment
Purpose
Currently, the vision and depth information obtained from the eye-to-hand RGB-D camera can apply to the reconstruction of the three-dimensional (3D) environment for a robotic operation workspace. The reconstructed 3D space contributes to a symmetrical and equal observation view for robots and humans, which can be considered a digital twin (DT) environment. The purpose of this study is to enhance the robot skill in the physical workspace, although the artificial intelligence (AI) technique has high performance of the robotic operation in the known environments.
Design/methodology/approach
A multimodal interaction framework is proposed in DT operation environments.
Findings
A fast image-based target segmentation technique is combined in the 3D reconstruction of the robotic operation environment from the eye-to-hand camera, thus expediting the 3D DT environment generation without accuracy loss. A multimodal interaction interface is integrated into the DT environment.
Originality/value
The users are supported to operate the virtual objects in the DT environment using speech, mouse and keyboard simultaneously. The humans’ operations in 3D DT virtual space are recorded, and cues are provided for the robot’s operations in practice.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.