G. Dzhardimalieva, I. Uflyand, V. Zhinzhilo, E. Drogan, V. Burlakova
{"title":"聚吡啶配体氧化丙烯酸锆配合物的合成及其在纳米抗磨材料中的应用","authors":"G. Dzhardimalieva, I. Uflyand, V. Zhinzhilo, E. Drogan, V. Burlakova","doi":"10.30791/1028-978x-2022-12-62-75","DOIUrl":null,"url":null,"abstract":"In the present work, complexes of zirconium(IV) oxyacrylate with polypyridine ligands 2,2’-bipyridine, 1,10-phenanthroline, and 4’-phenyl-2,2’:6’,2’’-terpyridine were obtained for the first time and characterized by elemental analysis, IR spectroscopy, thermogravimetry and differential scanning calorimetry. Thermolysis of these complexes at 600 °C made it possible to obtain nanosized zirconium oxides, which were studied by X-ray diffraction analysis, scanning electron microscopy, high-resolution transmission electron microscopy, and atomic force microscopy. The average crystallite size of the obtained zirconium oxide nanoparticles is 5.63 – 6.06 nm. Zirconium oxide nanoparticles are characterized by spherical and oval shapes. The products have been tested as anti-wear additives in lubricating oils. The optimal concentrations of nanoparticles were determined, at which the antiwear properties of the lubricant are best manifested.","PeriodicalId":20003,"journal":{"name":"Perspektivnye Materialy","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of zirconium(IV) oxyacrylate complexes with polypyridine ligands and their use as precursors of nanomaterials with antiwear properties\",\"authors\":\"G. Dzhardimalieva, I. Uflyand, V. Zhinzhilo, E. Drogan, V. Burlakova\",\"doi\":\"10.30791/1028-978x-2022-12-62-75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, complexes of zirconium(IV) oxyacrylate with polypyridine ligands 2,2’-bipyridine, 1,10-phenanthroline, and 4’-phenyl-2,2’:6’,2’’-terpyridine were obtained for the first time and characterized by elemental analysis, IR spectroscopy, thermogravimetry and differential scanning calorimetry. Thermolysis of these complexes at 600 °C made it possible to obtain nanosized zirconium oxides, which were studied by X-ray diffraction analysis, scanning electron microscopy, high-resolution transmission electron microscopy, and atomic force microscopy. The average crystallite size of the obtained zirconium oxide nanoparticles is 5.63 – 6.06 nm. Zirconium oxide nanoparticles are characterized by spherical and oval shapes. The products have been tested as anti-wear additives in lubricating oils. The optimal concentrations of nanoparticles were determined, at which the antiwear properties of the lubricant are best manifested.\",\"PeriodicalId\":20003,\"journal\":{\"name\":\"Perspektivnye Materialy\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perspektivnye Materialy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30791/1028-978x-2022-12-62-75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspektivnye Materialy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30791/1028-978x-2022-12-62-75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of zirconium(IV) oxyacrylate complexes with polypyridine ligands and their use as precursors of nanomaterials with antiwear properties
In the present work, complexes of zirconium(IV) oxyacrylate with polypyridine ligands 2,2’-bipyridine, 1,10-phenanthroline, and 4’-phenyl-2,2’:6’,2’’-terpyridine were obtained for the first time and characterized by elemental analysis, IR spectroscopy, thermogravimetry and differential scanning calorimetry. Thermolysis of these complexes at 600 °C made it possible to obtain nanosized zirconium oxides, which were studied by X-ray diffraction analysis, scanning electron microscopy, high-resolution transmission electron microscopy, and atomic force microscopy. The average crystallite size of the obtained zirconium oxide nanoparticles is 5.63 – 6.06 nm. Zirconium oxide nanoparticles are characterized by spherical and oval shapes. The products have been tested as anti-wear additives in lubricating oils. The optimal concentrations of nanoparticles were determined, at which the antiwear properties of the lubricant are best manifested.