基于压缩感知的声层析成像温度分布重建方法

IF 2.5 4区 医学 Q1 ACOUSTICS Ultrasonic Imaging Pub Date : 2022-05-01 DOI:10.1177/01617346221092695
Hua Yan, Yuankun Wei, Yinggang Zhou, Yifan Wang
{"title":"基于压缩感知的声层析成像温度分布重建方法","authors":"Hua Yan, Yuankun Wei, Yinggang Zhou, Yifan Wang","doi":"10.1177/01617346221092695","DOIUrl":null,"url":null,"abstract":"Acoustic tomography (AT) is one of a few non-contact measurement techniques that can present information about the temperature distribution. Its successful application greatly depends on the performance of the reconstruction algorithm. In this paper, a temperature distribution reconstruction method based on compressed sensing (CS) is proposed. Firstly, a measurement matrix of an AT system in a CS framework is established. Secondly, a sparse basis is selected based on the mutual coherence between the measurement matrix and sparse basis. Thirdly, an improvement of the orthogonal matching pursuit (OMP) algorithm, called the IMOMP algorithm, is proposed for pursuing efficiency in recovering sparse signals. Reconstruction experiments of Gaussian sparse signals showed that IMOMP was better than OMP in both success ratio and running time, and the selection method of sparse basis was effective. Finally, a temperature distribution reconstruction algorithm based on compressed sensing, that is, the CS-IMOMP algorithm, is proposed. Simulation and experiment results show that, compared with the least square algorithm and the Simultaneous Iterative Reconstruction Technique algorithm, the CS-IMOMP algorithm has smaller reconstruction errors and provides more accurate information about the temperature distribution.","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Temperature Distribution Reconstruction Method for Acoustic Tomography Based on Compressed Sensing\",\"authors\":\"Hua Yan, Yuankun Wei, Yinggang Zhou, Yifan Wang\",\"doi\":\"10.1177/01617346221092695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic tomography (AT) is one of a few non-contact measurement techniques that can present information about the temperature distribution. Its successful application greatly depends on the performance of the reconstruction algorithm. In this paper, a temperature distribution reconstruction method based on compressed sensing (CS) is proposed. Firstly, a measurement matrix of an AT system in a CS framework is established. Secondly, a sparse basis is selected based on the mutual coherence between the measurement matrix and sparse basis. Thirdly, an improvement of the orthogonal matching pursuit (OMP) algorithm, called the IMOMP algorithm, is proposed for pursuing efficiency in recovering sparse signals. Reconstruction experiments of Gaussian sparse signals showed that IMOMP was better than OMP in both success ratio and running time, and the selection method of sparse basis was effective. Finally, a temperature distribution reconstruction algorithm based on compressed sensing, that is, the CS-IMOMP algorithm, is proposed. Simulation and experiment results show that, compared with the least square algorithm and the Simultaneous Iterative Reconstruction Technique algorithm, the CS-IMOMP algorithm has smaller reconstruction errors and provides more accurate information about the temperature distribution.\",\"PeriodicalId\":49401,\"journal\":{\"name\":\"Ultrasonic Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonic Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01617346221092695\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346221092695","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 3

摘要

声波层析成像(AT)是为数不多的能够提供温度分布信息的非接触式测量技术之一。它的成功应用很大程度上取决于重构算法的性能。提出了一种基于压缩感知(CS)的温度分布重构方法。首先,建立了CS框架下AT系统的测量矩阵。其次,根据测量矩阵与稀疏基之间的相互相干性选择稀疏基;第三,提出了一种改进的正交匹配追踪(OMP)算法,即IMOMP算法,以追求稀疏信号恢复的效率。高斯稀疏信号的重建实验表明,IMOMP在成功率和运行时间上都优于OMP,稀疏基选择方法是有效的。最后,提出了一种基于压缩感知的温度分布重构算法,即CS-IMOMP算法。仿真和实验结果表明,与最小二乘算法和同步迭代重建技术算法相比,CS-IMOMP算法具有更小的重建误差和更准确的温度分布信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature Distribution Reconstruction Method for Acoustic Tomography Based on Compressed Sensing
Acoustic tomography (AT) is one of a few non-contact measurement techniques that can present information about the temperature distribution. Its successful application greatly depends on the performance of the reconstruction algorithm. In this paper, a temperature distribution reconstruction method based on compressed sensing (CS) is proposed. Firstly, a measurement matrix of an AT system in a CS framework is established. Secondly, a sparse basis is selected based on the mutual coherence between the measurement matrix and sparse basis. Thirdly, an improvement of the orthogonal matching pursuit (OMP) algorithm, called the IMOMP algorithm, is proposed for pursuing efficiency in recovering sparse signals. Reconstruction experiments of Gaussian sparse signals showed that IMOMP was better than OMP in both success ratio and running time, and the selection method of sparse basis was effective. Finally, a temperature distribution reconstruction algorithm based on compressed sensing, that is, the CS-IMOMP algorithm, is proposed. Simulation and experiment results show that, compared with the least square algorithm and the Simultaneous Iterative Reconstruction Technique algorithm, the CS-IMOMP algorithm has smaller reconstruction errors and provides more accurate information about the temperature distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonic Imaging
Ultrasonic Imaging 医学-工程:生物医学
CiteScore
5.10
自引率
8.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging
期刊最新文献
Image Features and Diagnostic Value of Contrast-Enhanced Ultrasound for Ductal Carcinoma In Situ of the Breast: Preliminary Findings. Ultrasonic Imaging of Deeper Bone Defect Using Virtual Source Synthetic Aperture with Phased Shift Migration: A Phantom Study. Predictive Value of the Nomogram Model Based on Multimodal Ultrasound Features for Benign and Malignant Thyroid Nodules of C-TIRADS Category 4. High Frequency Ultrasound Transducer Based on Sm-Doped Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 Ceramic for Intravascular Ultrasound Imaging. Development and Assessment of a Predictive Model for Ki-67 Expression Using Ultrasound Indicators and Non-Morphological Magnetic Resonance Imaging Parameters Before Breast Cancer Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1