Xiaoyan Zhao, Rui Chen, Jianwei Li, Chunlei Li, Yan Chen, Tian-yao Zhang, Z. Zhang
{"title":"支持多协议标准化接入检测的边缘网关系统框架设计","authors":"Xiaoyan Zhao, Rui Chen, Jianwei Li, Chunlei Li, Yan Chen, Tian-yao Zhang, Z. Zhang","doi":"10.20965/jaciii.2023.p0431","DOIUrl":null,"url":null,"abstract":"Recently, intelligent city construction has been promoted with the development of the Internet of things (IoT). The edge IoT gateway plays a critical role as the data aggregation core and processing center. Most existing gateways mainly solve heavy data storage and processing loads in cloud computing centers. There is less attention paid to multi-protocol data transmission and fusion. However, multiple products with different protocols in an IoT system require a flexible gateway compatible with multiple protocols. This paper proposes a multi-protocol edge gateway. The frame design was based on the actual demand for edge data acquisition. The gateway hardware platform used an RK3399 chip transplanted from the embedded operating system. It could support simultaneous multi-protocol access to ZigBee, LoRa, Bluetooth, and Wi-Fi. We combined the plug-and-play (PnP) hardware device access detection scheme with the system onboard interface driver to realize dynamic access detection and unified device management. In addition, the gateway also integrated data storage and access functions and partial edge computing functions. Finally, the experiment results verified that the multi-protocol edge gateway could meet the demand for data access and device control.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"11 1","pages":"431-437"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Framework Design of an Edge Gateway System Supporting Multi-Protocol Standardized Access Detection\",\"authors\":\"Xiaoyan Zhao, Rui Chen, Jianwei Li, Chunlei Li, Yan Chen, Tian-yao Zhang, Z. Zhang\",\"doi\":\"10.20965/jaciii.2023.p0431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, intelligent city construction has been promoted with the development of the Internet of things (IoT). The edge IoT gateway plays a critical role as the data aggregation core and processing center. Most existing gateways mainly solve heavy data storage and processing loads in cloud computing centers. There is less attention paid to multi-protocol data transmission and fusion. However, multiple products with different protocols in an IoT system require a flexible gateway compatible with multiple protocols. This paper proposes a multi-protocol edge gateway. The frame design was based on the actual demand for edge data acquisition. The gateway hardware platform used an RK3399 chip transplanted from the embedded operating system. It could support simultaneous multi-protocol access to ZigBee, LoRa, Bluetooth, and Wi-Fi. We combined the plug-and-play (PnP) hardware device access detection scheme with the system onboard interface driver to realize dynamic access detection and unified device management. In addition, the gateway also integrated data storage and access functions and partial edge computing functions. Finally, the experiment results verified that the multi-protocol edge gateway could meet the demand for data access and device control.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"11 1\",\"pages\":\"431-437\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Framework Design of an Edge Gateway System Supporting Multi-Protocol Standardized Access Detection
Recently, intelligent city construction has been promoted with the development of the Internet of things (IoT). The edge IoT gateway plays a critical role as the data aggregation core and processing center. Most existing gateways mainly solve heavy data storage and processing loads in cloud computing centers. There is less attention paid to multi-protocol data transmission and fusion. However, multiple products with different protocols in an IoT system require a flexible gateway compatible with multiple protocols. This paper proposes a multi-protocol edge gateway. The frame design was based on the actual demand for edge data acquisition. The gateway hardware platform used an RK3399 chip transplanted from the embedded operating system. It could support simultaneous multi-protocol access to ZigBee, LoRa, Bluetooth, and Wi-Fi. We combined the plug-and-play (PnP) hardware device access detection scheme with the system onboard interface driver to realize dynamic access detection and unified device management. In addition, the gateway also integrated data storage and access functions and partial edge computing functions. Finally, the experiment results verified that the multi-protocol edge gateway could meet the demand for data access and device control.