阿尔茨海默病病例检索的多模态方法

K. Dineva, Ivan Kitanovski, I. Dimitrovski, S. Loskovska, Alzheimer's Disease Neuroimaging Initiative
{"title":"阿尔茨海默病病例检索的多模态方法","authors":"K. Dineva, Ivan Kitanovski, I. Dimitrovski, S. Loskovska, Alzheimer's Disease Neuroimaging Initiative","doi":"10.5220/0011939800003414","DOIUrl":null,"url":null,"abstract":": In this research, we evaluate medical case retrieval for AD on the bases of descriptors generated by combining different modalities (Magnetic Resonance Imaging (MRI) markers, Fluorodeoxy-glucose Positron Emission Tomography (FDG-PET) based measures, Cerebrospinal Fluid (CSF) protein levels, and Apolipoprotein-E (APOE) genotype and age as risk factors). We investigated whether they would provide complementary information aiming to improve medical case retrieval for AD. According to the obtained results, we concluded that this approach outperformed the retrieval results in the current reported research by gaining MAP value of 0.98 yet providing an efficient medical case retrieval for AD and keeping low dimensional feature vector.","PeriodicalId":20676,"journal":{"name":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","volume":"14 1","pages":"554-561"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Modality Approach to Medical Case Retrieval for Alzheimer's Disease\",\"authors\":\"K. Dineva, Ivan Kitanovski, I. Dimitrovski, S. Loskovska, Alzheimer's Disease Neuroimaging Initiative\",\"doi\":\"10.5220/0011939800003414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this research, we evaluate medical case retrieval for AD on the bases of descriptors generated by combining different modalities (Magnetic Resonance Imaging (MRI) markers, Fluorodeoxy-glucose Positron Emission Tomography (FDG-PET) based measures, Cerebrospinal Fluid (CSF) protein levels, and Apolipoprotein-E (APOE) genotype and age as risk factors). We investigated whether they would provide complementary information aiming to improve medical case retrieval for AD. According to the obtained results, we concluded that this approach outperformed the retrieval results in the current reported research by gaining MAP value of 0.98 yet providing an efficient medical case retrieval for AD and keeping low dimensional feature vector.\",\"PeriodicalId\":20676,\"journal\":{\"name\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"volume\":\"14 1\",\"pages\":\"554-561\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011939800003414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011939800003414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们基于不同方式(磁共振成像(MRI)标记、基于氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)的测量、脑脊液(CSF)蛋白水平、载脂蛋白e (APOE)基因型和年龄作为危险因素)生成的描述符,对AD的医学病例检索进行评估。我们调查了它们是否会提供旨在改善阿尔茨海默病医学病例检索的补充信息。根据得到的结果,我们得出结论,该方法在MAP值为0.98的情况下,在保持低维特征向量的情况下,为AD提供了高效的医学案例检索,优于目前报道的检索结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Modality Approach to Medical Case Retrieval for Alzheimer's Disease
: In this research, we evaluate medical case retrieval for AD on the bases of descriptors generated by combining different modalities (Magnetic Resonance Imaging (MRI) markers, Fluorodeoxy-glucose Positron Emission Tomography (FDG-PET) based measures, Cerebrospinal Fluid (CSF) protein levels, and Apolipoprotein-E (APOE) genotype and age as risk factors). We investigated whether they would provide complementary information aiming to improve medical case retrieval for AD. According to the obtained results, we concluded that this approach outperformed the retrieval results in the current reported research by gaining MAP value of 0.98 yet providing an efficient medical case retrieval for AD and keeping low dimensional feature vector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Realization and First Insights of the Multicenter Integrative Breast Cancer Registry INTREST Development of Learning System to Support for Passing Steps of Wheelchair On the Problem of Data Availability in Automatic Voice Disorder Detection An NLP-Enhanced Approach to Test Comorbidities Risk Scoring Based on Unstructured Health Data for Hospital Readmissions Prediction A Survey on Technologies Used During out of Hospital Cardiac Arrest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1