高速公路弯曲路段智能车辆主动变道控制

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY Modelling and Simulation in Engineering Pub Date : 2022-05-27 DOI:10.1155/2022/9374118
Pengfei Feng, Huiqing Jin, Linfeng Zhao, Mingyu Lu
{"title":"高速公路弯曲路段智能车辆主动变道控制","authors":"Pengfei Feng, Huiqing Jin, Linfeng Zhao, Mingyu Lu","doi":"10.1155/2022/9374118","DOIUrl":null,"url":null,"abstract":"In order to improve the intelligent vehicle lane-changing performance, an active lane-changing control algorithm is proposed considering the changes of road curvature and vehicle speed. Firstly, the vehicle dynamics model considering vehicle speed variation and lane-changing safety distance is established, and the expected lane-changing trajectory model under the curved road is designed simultaneously. Then, taking the yaw rate and longitudinal speed as the control objectives of lateral and longitudinal motions, respectively, the sliding-mode variable structure control method based on Lyapunov stability condition is adopted, and the trajectory tracking controller is designed by combining the inverted method to track the desired lane-changing trajectory. Finally, the lane-changing trajectory model and trajectory tracking controller are verified in simulation platform of CarSim/Simulink and hardware-in-the-loop (HIL) test bench. The results show that the proposed trajectory tracking control method can perform the lane-changing behavior well under different road curvatures and vehicle speeds while maintaining high trajectory tracking control accuracy.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Lane-Changing Control of Intelligent Vehicle on Curved Section of Expressway\",\"authors\":\"Pengfei Feng, Huiqing Jin, Linfeng Zhao, Mingyu Lu\",\"doi\":\"10.1155/2022/9374118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the intelligent vehicle lane-changing performance, an active lane-changing control algorithm is proposed considering the changes of road curvature and vehicle speed. Firstly, the vehicle dynamics model considering vehicle speed variation and lane-changing safety distance is established, and the expected lane-changing trajectory model under the curved road is designed simultaneously. Then, taking the yaw rate and longitudinal speed as the control objectives of lateral and longitudinal motions, respectively, the sliding-mode variable structure control method based on Lyapunov stability condition is adopted, and the trajectory tracking controller is designed by combining the inverted method to track the desired lane-changing trajectory. Finally, the lane-changing trajectory model and trajectory tracking controller are verified in simulation platform of CarSim/Simulink and hardware-in-the-loop (HIL) test bench. The results show that the proposed trajectory tracking control method can perform the lane-changing behavior well under different road curvatures and vehicle speeds while maintaining high trajectory tracking control accuracy.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/9374118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9374118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了提高智能车辆的变道性能,提出了一种考虑道路曲率和车速变化的主动变道控制算法。首先,建立了考虑车速变化和变道安全距离的车辆动力学模型,同时设计了弯道下的期望变道轨迹模型;然后,以横摆角速度和纵向速度分别作为横向运动和纵向运动的控制目标,采用基于Lyapunov稳定条件的滑模变结构控制方法,结合反求方法设计轨迹跟踪控制器,跟踪期望变道轨迹。最后,在CarSim/Simulink仿真平台和半实物试验台对变道轨迹模型和轨迹跟踪控制器进行了验证。结果表明,所提出的轨迹跟踪控制方法在保持较高的轨迹跟踪控制精度的同时,能够在不同的道路曲率和车速条件下很好地实现变道行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active Lane-Changing Control of Intelligent Vehicle on Curved Section of Expressway
In order to improve the intelligent vehicle lane-changing performance, an active lane-changing control algorithm is proposed considering the changes of road curvature and vehicle speed. Firstly, the vehicle dynamics model considering vehicle speed variation and lane-changing safety distance is established, and the expected lane-changing trajectory model under the curved road is designed simultaneously. Then, taking the yaw rate and longitudinal speed as the control objectives of lateral and longitudinal motions, respectively, the sliding-mode variable structure control method based on Lyapunov stability condition is adopted, and the trajectory tracking controller is designed by combining the inverted method to track the desired lane-changing trajectory. Finally, the lane-changing trajectory model and trajectory tracking controller are verified in simulation platform of CarSim/Simulink and hardware-in-the-loop (HIL) test bench. The results show that the proposed trajectory tracking control method can perform the lane-changing behavior well under different road curvatures and vehicle speeds while maintaining high trajectory tracking control accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
期刊最新文献
Finite Element Modelling and Simulation of Tunnel Gates of Dam Structures in ABAQUS Using Reduced-Integrated 8-Node Hexahedral Solid-Shell Element Modeling and Simulation of the Effect of Airbag Thickness on the Performance of Extended Handle Pneumatic Floor Jack Assessment of Fractional and Integer Order Models of Induction Motor Using MATLAB/Simulink State of the Art of Modelling and Design Approaches for Ejectors in Proton Exchange Membrane Fuel Cell Predictive Modeling of Environmental Impact on Drone Datalink Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1