2019冠状病毒病、俄乌战争以及股票和加密市场之间的相互联系:基于小波的分析

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Business Analytics Pub Date : 2023-03-26 DOI:10.1080/2573234X.2023.2193224
Wajdi Frikha, M. Brahim, A. Jeribi, Amine Lahiani
{"title":"2019冠状病毒病、俄乌战争以及股票和加密市场之间的相互联系:基于小波的分析","authors":"Wajdi Frikha, M. Brahim, A. Jeribi, Amine Lahiani","doi":"10.1080/2573234X.2023.2193224","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper aims to investigate the impacts of the COVID-19 pandemic and Russia-Ukraine war on the interconnectedness between the US and China stock markets, major cryptocurrency and commodity markets using the wavelet coherence approach over the period from January 1 2016 to April 18 2022. The aim is to understand how the COVID-19 pandemic and the Russia-Ukraine war have affected the hedging efficiency of volatile crypto-currencies and gold. Wavelet coherency analysis unveils perceptual differences between the short-term and longer-term market reactions. In the short-run, we find strong co-movements during the first and second waves of the pandemic. During the first wave, longer-term investors were driven by the belief of future pandemic demise. They make use of time diversification that results in positive returns. During the Russia-Ukraine war, S&P 500 leads Bitcoin, BNB, and Ripple whereas Ethereum leads S&P 500 and SSE.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"COVID-19, Russia-Ukraine war and interconnectedness between stock and crypto markets: a wavelet-based analysis\",\"authors\":\"Wajdi Frikha, M. Brahim, A. Jeribi, Amine Lahiani\",\"doi\":\"10.1080/2573234X.2023.2193224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper aims to investigate the impacts of the COVID-19 pandemic and Russia-Ukraine war on the interconnectedness between the US and China stock markets, major cryptocurrency and commodity markets using the wavelet coherence approach over the period from January 1 2016 to April 18 2022. The aim is to understand how the COVID-19 pandemic and the Russia-Ukraine war have affected the hedging efficiency of volatile crypto-currencies and gold. Wavelet coherency analysis unveils perceptual differences between the short-term and longer-term market reactions. In the short-run, we find strong co-movements during the first and second waves of the pandemic. During the first wave, longer-term investors were driven by the belief of future pandemic demise. They make use of time diversification that results in positive returns. During the Russia-Ukraine war, S&P 500 leads Bitcoin, BNB, and Ripple whereas Ethereum leads S&P 500 and SSE.\",\"PeriodicalId\":36417,\"journal\":{\"name\":\"Journal of Business Analytics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2573234X.2023.2193224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2023.2193224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

本文旨在利用小波相干性方法研究2016年1月1日至2022年4月18日期间,COVID-19大流行和俄罗斯-乌克兰战争对美国和中国股票市场、主要加密货币和大宗商品市场互联性的影响。其目的是了解COVID-19大流行和俄罗斯-乌克兰战争如何影响波动性加密货币和黄金的对冲效率。小波相干性分析揭示了短期和长期市场反应之间的感知差异。在短期内,我们发现在大流行的第一波和第二波期间出现了强劲的协同运动。在第一波浪潮中,长期投资者受到未来大流行消亡的信念的推动。他们利用时间分散带来正回报。在俄罗斯-乌克兰战争期间,标准普尔500指数领先比特币,BNB和Ripple,而以太坊领先标准普尔500指数和SSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19, Russia-Ukraine war and interconnectedness between stock and crypto markets: a wavelet-based analysis
ABSTRACT This paper aims to investigate the impacts of the COVID-19 pandemic and Russia-Ukraine war on the interconnectedness between the US and China stock markets, major cryptocurrency and commodity markets using the wavelet coherence approach over the period from January 1 2016 to April 18 2022. The aim is to understand how the COVID-19 pandemic and the Russia-Ukraine war have affected the hedging efficiency of volatile crypto-currencies and gold. Wavelet coherency analysis unveils perceptual differences between the short-term and longer-term market reactions. In the short-run, we find strong co-movements during the first and second waves of the pandemic. During the first wave, longer-term investors were driven by the belief of future pandemic demise. They make use of time diversification that results in positive returns. During the Russia-Ukraine war, S&P 500 leads Bitcoin, BNB, and Ripple whereas Ethereum leads S&P 500 and SSE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
期刊最新文献
Decoding technological frames: a qualitative inquiry into business analytics perspectives Maximising competitive advantage: the role of strategic business analytics framework in business strategies Data Analytics for Societal Challenges: Examining Student Participation in the National School Lunch Program Exploring the relationship between YouTube video optimisation practices and video rankings for online marketing: a machine learning approach The era of business analytics: identifying and ranking the differences between business intelligence and data science from practitioners’ perspective using the Delphi method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1