N. Watanabe, Tomonori Nakamura, Mami Nozawa, Masaki Ishida, H. Shimasaki, Y. Kado
{"title":"体内通信中mhz频段射频信号的传播特性","authors":"N. Watanabe, Tomonori Nakamura, Mami Nozawa, Masaki Ishida, H. Shimasaki, Y. Kado","doi":"10.1109/IMWS-BIO.2013.6756199","DOIUrl":null,"url":null,"abstract":"We developed a near-field coupling communication (NFCC) technology that uses the surface of the human body as a data transmission path in the MHz band. It is important to assess the loss of signal propagation on the human body to design a “touch and connect” form of stable NFCC links. We measured the signal propagation characteristics on a phantom equivalent to the human body with an electrically isolated probe. In addition, we evaluated the signal loss characteristics with a high frequency structure simulator. As a result, we found dependencies of signal loss on distance in both the experiments and the simulations.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"10 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Propagation characteristics of MHz-band RF signals for intra-body communication\",\"authors\":\"N. Watanabe, Tomonori Nakamura, Mami Nozawa, Masaki Ishida, H. Shimasaki, Y. Kado\",\"doi\":\"10.1109/IMWS-BIO.2013.6756199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a near-field coupling communication (NFCC) technology that uses the surface of the human body as a data transmission path in the MHz band. It is important to assess the loss of signal propagation on the human body to design a “touch and connect” form of stable NFCC links. We measured the signal propagation characteristics on a phantom equivalent to the human body with an electrically isolated probe. In addition, we evaluated the signal loss characteristics with a high frequency structure simulator. As a result, we found dependencies of signal loss on distance in both the experiments and the simulations.\",\"PeriodicalId\":6321,\"journal\":{\"name\":\"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)\",\"volume\":\"10 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS-BIO.2013.6756199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Propagation characteristics of MHz-band RF signals for intra-body communication
We developed a near-field coupling communication (NFCC) technology that uses the surface of the human body as a data transmission path in the MHz band. It is important to assess the loss of signal propagation on the human body to design a “touch and connect” form of stable NFCC links. We measured the signal propagation characteristics on a phantom equivalent to the human body with an electrically isolated probe. In addition, we evaluated the signal loss characteristics with a high frequency structure simulator. As a result, we found dependencies of signal loss on distance in both the experiments and the simulations.