{"title":"从数论、物理和拓扑学的三个Hopf代数及其共同背景II:一般范畴公式","authors":"Imma G'alvez-Carrillo, R. Kaufmann, A. Tonks","doi":"10.4310/cntp.2020.v14.n1.a2","DOIUrl":null,"url":null,"abstract":"We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebra of Goncharov for multiple zeta values, that of Connes-Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, co-operads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretations of known constructions in a large common framework which is presented step-by-step with examples throughout. In this second part of two papers, we give the general categorical formulation.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation\",\"authors\":\"Imma G'alvez-Carrillo, R. Kaufmann, A. Tonks\",\"doi\":\"10.4310/cntp.2020.v14.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebra of Goncharov for multiple zeta values, that of Connes-Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, co-operads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretations of known constructions in a large common framework which is presented step-by-step with examples throughout. In this second part of two papers, we give the general categorical formulation.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2020.v14.n1.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cntp.2020.v14.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation
We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebra of Goncharov for multiple zeta values, that of Connes-Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, co-operads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretations of known constructions in a large common framework which is presented step-by-step with examples throughout. In this second part of two papers, we give the general categorical formulation.