基于耦合条件马尔可夫网络的室内移动语义标注

Huan Li, Hua Lu, M. A. Cheema, L. Shou, Gang Chen
{"title":"基于耦合条件马尔可夫网络的室内移动语义标注","authors":"Huan Li, Hua Lu, M. A. Cheema, L. Shou, Gang Chen","doi":"10.1109/ICDE48307.2020.00128","DOIUrl":null,"url":null,"abstract":"Indoor mobility semantics analytics can greatly benefit many pertinent applications. Existing semantic annotation methods mainly focus on outdoor space and require extra knowledge such as POI category or human activity regularity. However, these conditions are difficult to meet in indoor venues with relatively small extents but complex topology. This work studies the annotation of indoor mobility semantics that describe an object’s mobility event (what ) at a semantic indoor region (where ) during a time period (when ). A coupled conditional Markov network (C2MN) is proposed with a set of feature functions carefully designed by incorporating indoor topology and mobility behaviors. C2MN is able to capture probabilistic dependencies among positioning records, semantic regions, and mobility events jointly. Nevertheless, the correlation of regions and events hinders the parameters learning. Therefore, we devise an alternate learning algorithm to enable the parameter learning over correlated variables. The extensive experiments demonstrate that our C2MN-based semantic annotation is efficient and effective on both real and synthetic indoor mobility data.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"19 1","pages":"1441-1452"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Indoor Mobility Semantics Annotation Using Coupled Conditional Markov Networks\",\"authors\":\"Huan Li, Hua Lu, M. A. Cheema, L. Shou, Gang Chen\",\"doi\":\"10.1109/ICDE48307.2020.00128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor mobility semantics analytics can greatly benefit many pertinent applications. Existing semantic annotation methods mainly focus on outdoor space and require extra knowledge such as POI category or human activity regularity. However, these conditions are difficult to meet in indoor venues with relatively small extents but complex topology. This work studies the annotation of indoor mobility semantics that describe an object’s mobility event (what ) at a semantic indoor region (where ) during a time period (when ). A coupled conditional Markov network (C2MN) is proposed with a set of feature functions carefully designed by incorporating indoor topology and mobility behaviors. C2MN is able to capture probabilistic dependencies among positioning records, semantic regions, and mobility events jointly. Nevertheless, the correlation of regions and events hinders the parameters learning. Therefore, we devise an alternate learning algorithm to enable the parameter learning over correlated variables. The extensive experiments demonstrate that our C2MN-based semantic annotation is efficient and effective on both real and synthetic indoor mobility data.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"19 1\",\"pages\":\"1441-1452\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

室内移动语义分析可以极大地有利于许多相关的应用。现有的语义标注方法主要集中在户外空间,需要额外的知识,如POI类别或人类活动的规律性。然而,这些条件在面积相对较小但拓扑结构复杂的室内场馆中很难满足。这项工作研究了室内移动语义的注释,该语义描述了一个时间段(何时)在语义室内区域(何地)中物体的移动事件(什么)。提出了一种耦合条件马尔可夫网络(C2MN),该网络结合室内拓扑和移动行为,精心设计了一组特征函数。C2MN能够联合捕获定位记录、语义区域和移动事件之间的概率依赖关系。然而,区域和事件的相关性阻碍了参数的学习。因此,我们设计了一种替代学习算法来实现对相关变量的参数学习。大量的实验表明,我们基于c2mn的语义标注在真实和合成室内移动数据上都是高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indoor Mobility Semantics Annotation Using Coupled Conditional Markov Networks
Indoor mobility semantics analytics can greatly benefit many pertinent applications. Existing semantic annotation methods mainly focus on outdoor space and require extra knowledge such as POI category or human activity regularity. However, these conditions are difficult to meet in indoor venues with relatively small extents but complex topology. This work studies the annotation of indoor mobility semantics that describe an object’s mobility event (what ) at a semantic indoor region (where ) during a time period (when ). A coupled conditional Markov network (C2MN) is proposed with a set of feature functions carefully designed by incorporating indoor topology and mobility behaviors. C2MN is able to capture probabilistic dependencies among positioning records, semantic regions, and mobility events jointly. Nevertheless, the correlation of regions and events hinders the parameters learning. Therefore, we devise an alternate learning algorithm to enable the parameter learning over correlated variables. The extensive experiments demonstrate that our C2MN-based semantic annotation is efficient and effective on both real and synthetic indoor mobility data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbocharging Geospatial Visualization Dashboards via a Materialized Sampling Cube Approach Mobility-Aware Dynamic Taxi Ridesharing Multiscale Frequent Co-movement Pattern Mining Automatic Calibration of Road Intersection Topology using Trajectories Turbine: Facebook’s Service Management Platform for Stream Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1