软件定位工具,通过案例研究应用程序支持中小企业采用大数据分析

Matthew Willetts, A. Atkins
{"title":"软件定位工具,通过案例研究应用程序支持中小企业采用大数据分析","authors":"Matthew Willetts, A. Atkins","doi":"10.15282/ijsecs.9.1.2023.5.0109","DOIUrl":null,"url":null,"abstract":"Big Data Analytics is widely adopted by large companies but to a lesser extent by small to medium-sized enterprises (SMEs). SMEs comprise 99% of all businesses in the UK (6 million), employ 61% of the country’s workforce and generate over half of the turnover of the UK’s private sector (£2.1 trillion). SMEs represent 99% of all businesses in Europe and 90% worldwide. Therefore, assisting them to gain competitive advantage by the adoption of technology, such as Big Data Analytics is an important business initiative. The aim of this paper is to outline the process in which a positioning tool based on theoretical frameworks has been developed to help SMEs analyse their readiness to adopt Big Data Analytics using a case study. Previous work has identified 21 barriers to adoption and a methodology based on theoretical frameworks was developed to produce a positioning tool Holistic Big Data Analytics Framework for UK SMEs (HBDAF-UKSMEs). The paper outlines a case study based on a software development company to utilise this HBDAF-UKSMEs framework to assess the readiness using the proposed scoring tool for the adoption of Big Data Analytics based on three stages: pre-data analytics, business intelligence and Big Data Analytics.","PeriodicalId":31240,"journal":{"name":"International Journal of Software Engineering and Computer Systems","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOFTWARE POSITIONING TOOL TO SUPPORT SMES IN ADOPTION OF BIG DATA ANALYTICS USING A CASE STUDY APPLICATION\",\"authors\":\"Matthew Willetts, A. Atkins\",\"doi\":\"10.15282/ijsecs.9.1.2023.5.0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big Data Analytics is widely adopted by large companies but to a lesser extent by small to medium-sized enterprises (SMEs). SMEs comprise 99% of all businesses in the UK (6 million), employ 61% of the country’s workforce and generate over half of the turnover of the UK’s private sector (£2.1 trillion). SMEs represent 99% of all businesses in Europe and 90% worldwide. Therefore, assisting them to gain competitive advantage by the adoption of technology, such as Big Data Analytics is an important business initiative. The aim of this paper is to outline the process in which a positioning tool based on theoretical frameworks has been developed to help SMEs analyse their readiness to adopt Big Data Analytics using a case study. Previous work has identified 21 barriers to adoption and a methodology based on theoretical frameworks was developed to produce a positioning tool Holistic Big Data Analytics Framework for UK SMEs (HBDAF-UKSMEs). The paper outlines a case study based on a software development company to utilise this HBDAF-UKSMEs framework to assess the readiness using the proposed scoring tool for the adoption of Big Data Analytics based on three stages: pre-data analytics, business intelligence and Big Data Analytics.\",\"PeriodicalId\":31240,\"journal\":{\"name\":\"International Journal of Software Engineering and Computer Systems\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Software Engineering and Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijsecs.9.1.2023.5.0109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Engineering and Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijsecs.9.1.2023.5.0109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大数据分析被大公司广泛采用,但中小企业(sme)的应用程度较低。中小企业占英国所有企业的99%(600万),雇佣了全国61%的劳动力,创造了英国私营部门一半以上的营业额(2.1万亿英镑)。中小企业占欧洲所有企业的99%,占全球企业的90%。因此,通过采用大数据分析等技术来帮助他们获得竞争优势是一项重要的业务举措。本文的目的是概述基于理论框架的定位工具的开发过程,通过案例研究帮助中小企业分析其采用大数据分析的准备情况。先前的工作已经确定了21个采用障碍,并开发了一种基于理论框架的方法,以产生定位工具英国中小企业整体大数据分析框架(HBDAF-UKSMEs)。本文概述了一个基于软件开发公司的案例研究,利用这个HBDAF-UKSMEs框架来评估采用大数据分析的准备情况,使用拟议的评分工具,基于三个阶段:数据前分析、商业智能和大数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SOFTWARE POSITIONING TOOL TO SUPPORT SMES IN ADOPTION OF BIG DATA ANALYTICS USING A CASE STUDY APPLICATION
Big Data Analytics is widely adopted by large companies but to a lesser extent by small to medium-sized enterprises (SMEs). SMEs comprise 99% of all businesses in the UK (6 million), employ 61% of the country’s workforce and generate over half of the turnover of the UK’s private sector (£2.1 trillion). SMEs represent 99% of all businesses in Europe and 90% worldwide. Therefore, assisting them to gain competitive advantage by the adoption of technology, such as Big Data Analytics is an important business initiative. The aim of this paper is to outline the process in which a positioning tool based on theoretical frameworks has been developed to help SMEs analyse their readiness to adopt Big Data Analytics using a case study. Previous work has identified 21 barriers to adoption and a methodology based on theoretical frameworks was developed to produce a positioning tool Holistic Big Data Analytics Framework for UK SMEs (HBDAF-UKSMEs). The paper outlines a case study based on a software development company to utilise this HBDAF-UKSMEs framework to assess the readiness using the proposed scoring tool for the adoption of Big Data Analytics based on three stages: pre-data analytics, business intelligence and Big Data Analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
14
期刊最新文献
The Mobile Augmented Reality Application for Improving Learning of Electronic Component Module in TVET A Systematic Mapping on Android-based Platform for Smart Inventory System Sentiment Classification of Tweets with Explicit Word Negations and Emoji Using Deep Learning Protocol Efficiency Using Multiple Level Encoding in Quantum Secure Direct Communication Protocol SECURING IOT HEALTHCARE APPLICATIONS AND BLOCKCHAIN: ADDRESSING SECURITY ATTACKS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1