基于改进支持向量机模型的非耦合混合概率密度估计

Y. Cai, Xue-mei Ye, Hongqiao Wang, Qinggang Fan
{"title":"基于改进支持向量机模型的非耦合混合概率密度估计","authors":"Y. Cai, Xue-mei Ye, Hongqiao Wang, Qinggang Fan","doi":"10.1109/ICNC.2012.6234690","DOIUrl":null,"url":null,"abstract":"Support vector machine(SVM) is a new approach for probability density estimation problems. But there are some shortcomings in the SVM based method, for example, the method can only optimize the model directly, and the slack factors must belong to the optimized range of solutions. On this basis, an improved SVM model named single slack factor SVM probability density estimation model is proposed in the paper. In this model, the scale of object function is reduced, so the computation efficient is greatly enhanced. The experiment results on uncoupled mixture probability density estimation show the effectiveness and feasibility of the model.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"11 1","pages":"126-129"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncoupled mixture probability density estimation based on an improved support vector machine model\",\"authors\":\"Y. Cai, Xue-mei Ye, Hongqiao Wang, Qinggang Fan\",\"doi\":\"10.1109/ICNC.2012.6234690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector machine(SVM) is a new approach for probability density estimation problems. But there are some shortcomings in the SVM based method, for example, the method can only optimize the model directly, and the slack factors must belong to the optimized range of solutions. On this basis, an improved SVM model named single slack factor SVM probability density estimation model is proposed in the paper. In this model, the scale of object function is reduced, so the computation efficient is greatly enhanced. The experiment results on uncoupled mixture probability density estimation show the effectiveness and feasibility of the model.\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"11 1\",\"pages\":\"126-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

支持向量机(SVM)是一种新的概率密度估计方法。但基于支持向量机的方法存在一些不足,如只能直接对模型进行优化,松弛因子必须在解的优化范围内。在此基础上,提出了一种改进的支持向量机模型——单松弛因子支持向量机概率密度估计模型。该模型减小了目标函数的尺度,大大提高了计算效率。对非耦合混合概率密度估计的实验结果表明了该模型的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncoupled mixture probability density estimation based on an improved support vector machine model
Support vector machine(SVM) is a new approach for probability density estimation problems. But there are some shortcomings in the SVM based method, for example, the method can only optimize the model directly, and the slack factors must belong to the optimized range of solutions. On this basis, an improved SVM model named single slack factor SVM probability density estimation model is proposed in the paper. In this model, the scale of object function is reduced, so the computation efficient is greatly enhanced. The experiment results on uncoupled mixture probability density estimation show the effectiveness and feasibility of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BER and HPA Nonlinearities Compensation for Joint Polar Coded SCMA System over Rayleigh Fading Channels Harmonizing Wearable Biosensor Data Streams to Test Polysubstance Detection. eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data. Automatic Detection of Opioid Intake Using Wearable Biosensor. A New Mining Method to Detect Real Time Substance Use Events from Wearable Biosensor Data Stream.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1