从社会数据中获得人类活动的先验知识

Zack Z. Zhu, Ulf Blanke, Alberto Calatroni, G. Tröster
{"title":"从社会数据中获得人类活动的先验知识","authors":"Zack Z. Zhu, Ulf Blanke, Alberto Calatroni, G. Tröster","doi":"10.1145/2493988.2494343","DOIUrl":null,"url":null,"abstract":"We explore the feasibility of utilizing large, crowd-generated online repositories to construct prior knowledge models for high-level activity recognition. Towards this, we mine the popular location-based social network, Foursquare, for geo-tagged activity reports. Although unstructured and noisy, we are able to extract, categorize and geographically map people's activities, thereby answering the question: what activities are possible where? Through Foursquare text only, we obtain a testing accuracy of 59.2% with 10 activity categories; using additional contextual cues such as venue semantics, we obtain an increased accuracy of 67.4%. By mapping prior odds of activities via geographical coordinates, we directly benefit activity recognition systems built on geo-aware mobile phones.","PeriodicalId":90988,"journal":{"name":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","volume":"1 1","pages":"141-142"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Prior knowledge of human activities from social data\",\"authors\":\"Zack Z. Zhu, Ulf Blanke, Alberto Calatroni, G. Tröster\",\"doi\":\"10.1145/2493988.2494343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the feasibility of utilizing large, crowd-generated online repositories to construct prior knowledge models for high-level activity recognition. Towards this, we mine the popular location-based social network, Foursquare, for geo-tagged activity reports. Although unstructured and noisy, we are able to extract, categorize and geographically map people's activities, thereby answering the question: what activities are possible where? Through Foursquare text only, we obtain a testing accuracy of 59.2% with 10 activity categories; using additional contextual cues such as venue semantics, we obtain an increased accuracy of 67.4%. By mapping prior odds of activities via geographical coordinates, we directly benefit activity recognition systems built on geo-aware mobile phones.\",\"PeriodicalId\":90988,\"journal\":{\"name\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"volume\":\"1 1\",\"pages\":\"141-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493988.2494343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493988.2494343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们探索了利用大型、人群生成的在线知识库来构建高级活动识别的先验知识模型的可行性。为此,我们挖掘了流行的基于位置的社交网络Foursquare,以获取地理标记的活动报告。尽管是非结构化和嘈杂的,但我们能够提取、分类和绘制人们活动的地理地图,从而回答这个问题:什么活动在哪里是可能的?仅通过Foursquare文本,我们获得了10个活动类别的测试准确率为59.2%;使用额外的上下文线索,如场地语义,我们获得了67.4%的准确率提高。通过地理坐标绘制活动的先验概率,我们直接受益于建立在地理感知移动电话上的活动识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prior knowledge of human activities from social data
We explore the feasibility of utilizing large, crowd-generated online repositories to construct prior knowledge models for high-level activity recognition. Towards this, we mine the popular location-based social network, Foursquare, for geo-tagged activity reports. Although unstructured and noisy, we are able to extract, categorize and geographically map people's activities, thereby answering the question: what activities are possible where? Through Foursquare text only, we obtain a testing accuracy of 59.2% with 10 activity categories; using additional contextual cues such as venue semantics, we obtain an increased accuracy of 67.4%. By mapping prior odds of activities via geographical coordinates, we directly benefit activity recognition systems built on geo-aware mobile phones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Semantic Web: 19th International Conference, ESWC 2022, Hersonissos, Crete, Greece, May 29 – June 2, 2022, Proceedings Correction to: A Semantic Framework to Support AI System Accountability and Audit The Semantic Web: 18th International Conference, ESWC 2021, Virtual Event, June 6–10, 2021, Proceedings QAnswer KG: Designing a Portable Question Answering System over RDF Data Incremental Multi-source Entity Resolution for Knowledge Graph Completion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1