创新与整合:勘探历史、埃克森美孚和圭亚那-苏里南盆地

Audrey L. Varga, M. Chandler, Worth B. Cotton, Erik A. Jackson, Ross J. Markwort, Randy A. Perkey, B. Renik, Tina Riley, S. I. Webb
{"title":"创新与整合:勘探历史、埃克森美孚和圭亚那-苏里南盆地","authors":"Audrey L. Varga, M. Chandler, Worth B. Cotton, Erik A. Jackson, Ross J. Markwort, Randy A. Perkey, B. Renik, Tina Riley, S. I. Webb","doi":"10.4043/30946-ms","DOIUrl":null,"url":null,"abstract":"\n Exploration in the Guyana-Suriname Basin has been a decades-long endeavor, including technical challenges and a lengthy history of drilling with no offshore success prior to the Liza discovery. The 1929 New Nickerie well was the first onshore well in Suriname, and was followed by 30 years of dry holes before the heavy-oil Tambaredjo field was discovered in the 1960s. In the 1990s, nearly 40 years after the Tambaredjo discovery, ExxonMobil utilized the 1970s-vintage, poor-to moderate-quality, 2D seismic and gravity data available to create a series of hand-drawn, level-of-maturity (LOM) source and environments-of-deposition (EOD) maps over the basin to move their exploration efforts forward. This work established the genetic fundamentals necessary for understanding the hydrocarbon system and led to negotiation for and capture of the Stabroek Block in 1999.\n The Liza-1 success in 2015 spurred extensive activity in the Basin by ExxonMobil and the Stabroek Block co-venturers, Hess Guyana Exploration Limited and CNOOC Petroleum Guyana Limited (Austin et al. 2021). The collection of extensive state-of-the art seismic data has been leveraged to enable successful exploration of multiple play types across the Guyana-Suriname Basin. Further data collection, including over 2 km of conventional core and additional seismic data acquisition and processing, has enabled ExxonMobil to adopt interpretation techniques that are applied across the entire basin to characterize and understand the subsurface better.\n From initial hand-drawn maps to the use of advanced technology today, ExxonMobil's work in the Guyana-Suriname Basin has relied on integration of geologic and geophysical understanding as well as the ability to leverage new technology to continue a successful exploration program with 8 billion barrels discovered to date.","PeriodicalId":11072,"journal":{"name":"Day 1 Mon, August 16, 2021","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Innovation and Integration: Exploration History, ExxonMobil, and the Guyana-Suriname Basin\",\"authors\":\"Audrey L. Varga, M. Chandler, Worth B. Cotton, Erik A. Jackson, Ross J. Markwort, Randy A. Perkey, B. Renik, Tina Riley, S. I. Webb\",\"doi\":\"10.4043/30946-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Exploration in the Guyana-Suriname Basin has been a decades-long endeavor, including technical challenges and a lengthy history of drilling with no offshore success prior to the Liza discovery. The 1929 New Nickerie well was the first onshore well in Suriname, and was followed by 30 years of dry holes before the heavy-oil Tambaredjo field was discovered in the 1960s. In the 1990s, nearly 40 years after the Tambaredjo discovery, ExxonMobil utilized the 1970s-vintage, poor-to moderate-quality, 2D seismic and gravity data available to create a series of hand-drawn, level-of-maturity (LOM) source and environments-of-deposition (EOD) maps over the basin to move their exploration efforts forward. This work established the genetic fundamentals necessary for understanding the hydrocarbon system and led to negotiation for and capture of the Stabroek Block in 1999.\\n The Liza-1 success in 2015 spurred extensive activity in the Basin by ExxonMobil and the Stabroek Block co-venturers, Hess Guyana Exploration Limited and CNOOC Petroleum Guyana Limited (Austin et al. 2021). The collection of extensive state-of-the art seismic data has been leveraged to enable successful exploration of multiple play types across the Guyana-Suriname Basin. Further data collection, including over 2 km of conventional core and additional seismic data acquisition and processing, has enabled ExxonMobil to adopt interpretation techniques that are applied across the entire basin to characterize and understand the subsurface better.\\n From initial hand-drawn maps to the use of advanced technology today, ExxonMobil's work in the Guyana-Suriname Basin has relied on integration of geologic and geophysical understanding as well as the ability to leverage new technology to continue a successful exploration program with 8 billion barrels discovered to date.\",\"PeriodicalId\":11072,\"journal\":{\"name\":\"Day 1 Mon, August 16, 2021\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, August 16, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/30946-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, August 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/30946-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在圭亚那-苏里南盆地的勘探已经进行了数十年的努力,包括技术挑战和漫长的钻井历史,在Liza发现之前没有取得海上成功。1929年的New Nickerie井是苏里南的第一口陆上井,在20世纪60年代发现Tambaredjo重油油田之前,又有30年的干井。在Tambaredjo发现近40年后的20世纪90年代,埃克森美孚利用1970年代的二维地震和重力数据,绘制了一系列手绘的盆地成熟度(LOM)源和沉积环境(EOD)图,以推进勘探工作。这项工作为了解油气系统建立了必要的遗传学基础,并导致了1999年Stabroek区块的谈判和占领。2015年Liza-1的成功开采刺激了埃克森美孚和Stabroek区块合作者Hess圭亚那勘探有限公司和中海油圭亚那石油有限公司在该盆地的广泛活动(Austin et al. 2021)。圭亚那-苏里南盆地收集了大量最先进的地震数据,成功地勘探了多种油气藏类型。进一步的数据收集,包括超过2公里的常规岩心和额外的地震数据采集和处理,使埃克森美孚能够采用适用于整个盆地的解释技术,以更好地表征和了解地下。从最初的手绘地图到今天的先进技术,埃克森美孚在圭亚那-苏里南盆地的工作依赖于地质和地球物理知识的整合,以及利用新技术的能力,继续成功的勘探计划,迄今已发现80亿桶石油。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovation and Integration: Exploration History, ExxonMobil, and the Guyana-Suriname Basin
Exploration in the Guyana-Suriname Basin has been a decades-long endeavor, including technical challenges and a lengthy history of drilling with no offshore success prior to the Liza discovery. The 1929 New Nickerie well was the first onshore well in Suriname, and was followed by 30 years of dry holes before the heavy-oil Tambaredjo field was discovered in the 1960s. In the 1990s, nearly 40 years after the Tambaredjo discovery, ExxonMobil utilized the 1970s-vintage, poor-to moderate-quality, 2D seismic and gravity data available to create a series of hand-drawn, level-of-maturity (LOM) source and environments-of-deposition (EOD) maps over the basin to move their exploration efforts forward. This work established the genetic fundamentals necessary for understanding the hydrocarbon system and led to negotiation for and capture of the Stabroek Block in 1999. The Liza-1 success in 2015 spurred extensive activity in the Basin by ExxonMobil and the Stabroek Block co-venturers, Hess Guyana Exploration Limited and CNOOC Petroleum Guyana Limited (Austin et al. 2021). The collection of extensive state-of-the art seismic data has been leveraged to enable successful exploration of multiple play types across the Guyana-Suriname Basin. Further data collection, including over 2 km of conventional core and additional seismic data acquisition and processing, has enabled ExxonMobil to adopt interpretation techniques that are applied across the entire basin to characterize and understand the subsurface better. From initial hand-drawn maps to the use of advanced technology today, ExxonMobil's work in the Guyana-Suriname Basin has relied on integration of geologic and geophysical understanding as well as the ability to leverage new technology to continue a successful exploration program with 8 billion barrels discovered to date.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drilling Fluids Project Engineering Guidance and Most Common Fluids Related Challenges for Deepwater and HPHT Offshore Wells Empirical Design of Optimum Frequency of Well Testing for Deepwater Operation Sustaining Oil and Gas Fields by Using Multiphase Gas Compression to Increase Production and Reserves, and Lower Operating Costs and Environmental Emissions Footprint Structural Digital Twin of FPSO for Monitoring the Hull and Topsides Based on Inspection Data and Load Measurement Application of LWD Multipole Sonic for Quantitative Cement Evaluation – Well Integrity in the Norwegian Continental Shelf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1