Hong-Ji Wang, Xiang Xu, Baomin Xu, Yu Shuang-Yuan, Wang Quan-Xin
{"title":"以学生为中心的网络学习促进知识转移","authors":"Hong-Ji Wang, Xiang Xu, Baomin Xu, Yu Shuang-Yuan, Wang Quan-Xin","doi":"10.6688/JISE.202011_36(6).0013","DOIUrl":null,"url":null,"abstract":"In the context of model compression using the student-teacher paradigm, we propose the idea of student-centric learning, where the student is less constrained by the teacher and able to learn on its own. We believe the student should have more flexibility during training. Towards student-centric learning, we propose two approaches: correlation-based learning and self-guided learning. In correlation-based learning, we propose to guide the student with two types of correlations between activations: the correlation between different channels and the correlation between different spatial locations. In self-guided learning, we propose to give the student network the opportunity to learn by itself in the form of additional self-taught neurons. We empirically validate our approaches on benchmark datasets, producing state-of-the-art results. Notably, our approaches can train a smaller and shallower student network with only 5 layers that outperforms a larger and deeper teacher network with 11 layers by nearly 1% on CIFAR-100.","PeriodicalId":50177,"journal":{"name":"Journal of Information Science and Engineering","volume":"2 1","pages":"1339-1351"},"PeriodicalIF":0.5000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Student-Centric Network Learning for Improved Knowledge Transfer\",\"authors\":\"Hong-Ji Wang, Xiang Xu, Baomin Xu, Yu Shuang-Yuan, Wang Quan-Xin\",\"doi\":\"10.6688/JISE.202011_36(6).0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of model compression using the student-teacher paradigm, we propose the idea of student-centric learning, where the student is less constrained by the teacher and able to learn on its own. We believe the student should have more flexibility during training. Towards student-centric learning, we propose two approaches: correlation-based learning and self-guided learning. In correlation-based learning, we propose to guide the student with two types of correlations between activations: the correlation between different channels and the correlation between different spatial locations. In self-guided learning, we propose to give the student network the opportunity to learn by itself in the form of additional self-taught neurons. We empirically validate our approaches on benchmark datasets, producing state-of-the-art results. Notably, our approaches can train a smaller and shallower student network with only 5 layers that outperforms a larger and deeper teacher network with 11 layers by nearly 1% on CIFAR-100.\",\"PeriodicalId\":50177,\"journal\":{\"name\":\"Journal of Information Science and Engineering\",\"volume\":\"2 1\",\"pages\":\"1339-1351\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.6688/JISE.202011_36(6).0013\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.6688/JISE.202011_36(6).0013","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Student-Centric Network Learning for Improved Knowledge Transfer
In the context of model compression using the student-teacher paradigm, we propose the idea of student-centric learning, where the student is less constrained by the teacher and able to learn on its own. We believe the student should have more flexibility during training. Towards student-centric learning, we propose two approaches: correlation-based learning and self-guided learning. In correlation-based learning, we propose to guide the student with two types of correlations between activations: the correlation between different channels and the correlation between different spatial locations. In self-guided learning, we propose to give the student network the opportunity to learn by itself in the form of additional self-taught neurons. We empirically validate our approaches on benchmark datasets, producing state-of-the-art results. Notably, our approaches can train a smaller and shallower student network with only 5 layers that outperforms a larger and deeper teacher network with 11 layers by nearly 1% on CIFAR-100.
期刊介绍:
The Journal of Information Science and Engineering is dedicated to the dissemination of information on computer science, computer engineering, and computer systems. This journal encourages articles on original research in the areas of computer hardware, software, man-machine interface, theory and applications. tutorial papers in the above-mentioned areas, and state-of-the-art papers on various aspects of computer systems and applications.