{"title":"通过代理接口为视障人士实现有效的Web数据记录交互","authors":"Javedul Ferdous, H. Lee, S. Jayarathna, V. Ashok","doi":"10.1145/3579364","DOIUrl":null,"url":null,"abstract":"Web data records are usually accompanied by auxiliary webpage segments, such as filters, sort options, search form, and multi-page links, to enhance interaction efficiency and convenience for end users. However, blind and visually impaired (BVI) persons are presently unable to fully exploit the auxiliary segments like their sighted peers, since these segments are scattered all across the screen, and as such assistive technologies used by BVI users, i.e., screen reader and screen magnifier, are not geared for efficient interaction with such scattered content. Specifically, for blind screen reader users, content navigation is predominantly one-dimensional despite the support for skipping content, and therefore navigating to-and-fro between different parts of the webpage is tedious and frustrating. Similarly, low vision screen magnifier users have to continuously pan back-and-forth between different portions of a webpage, given that only a portion of the screen is viewable at any instant due to content enlargement. The extant techniques to overcome inefficient web interaction for BVI users have mostly focused on general web-browsing activities, and as such they provide little to no support for data record-specific interaction activities such as filtering and sorting – activities that are equally important for facilitating quick and easy access to desired data records. To fill this void, we present InSupport, a browser extension that: (i) employs custom machine learning-based algorithms to automatically extract auxiliary segments on any webpage containing data records; and (ii) provides an instantly accessible proxy one-stop interface for easily navigating the extracted auxiliary segments using either basic keyboard shortcuts or mouse actions. Evaluation studies with 14 blind participants and 16 low vision participants showed significant improvement in web usability with InSupport, driven by increased reduction in interaction time and user effort, compared to the state-of-the-art solutions.","PeriodicalId":48574,"journal":{"name":"ACM Transactions on Interactive Intelligent Systems","volume":"14 1","pages":"1 - 27"},"PeriodicalIF":3.6000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enabling Efficient Web Data-Record Interaction for People with Visual Impairments via Proxy Interfaces\",\"authors\":\"Javedul Ferdous, H. Lee, S. Jayarathna, V. Ashok\",\"doi\":\"10.1145/3579364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web data records are usually accompanied by auxiliary webpage segments, such as filters, sort options, search form, and multi-page links, to enhance interaction efficiency and convenience for end users. However, blind and visually impaired (BVI) persons are presently unable to fully exploit the auxiliary segments like their sighted peers, since these segments are scattered all across the screen, and as such assistive technologies used by BVI users, i.e., screen reader and screen magnifier, are not geared for efficient interaction with such scattered content. Specifically, for blind screen reader users, content navigation is predominantly one-dimensional despite the support for skipping content, and therefore navigating to-and-fro between different parts of the webpage is tedious and frustrating. Similarly, low vision screen magnifier users have to continuously pan back-and-forth between different portions of a webpage, given that only a portion of the screen is viewable at any instant due to content enlargement. The extant techniques to overcome inefficient web interaction for BVI users have mostly focused on general web-browsing activities, and as such they provide little to no support for data record-specific interaction activities such as filtering and sorting – activities that are equally important for facilitating quick and easy access to desired data records. To fill this void, we present InSupport, a browser extension that: (i) employs custom machine learning-based algorithms to automatically extract auxiliary segments on any webpage containing data records; and (ii) provides an instantly accessible proxy one-stop interface for easily navigating the extracted auxiliary segments using either basic keyboard shortcuts or mouse actions. Evaluation studies with 14 blind participants and 16 low vision participants showed significant improvement in web usability with InSupport, driven by increased reduction in interaction time and user effort, compared to the state-of-the-art solutions.\",\"PeriodicalId\":48574,\"journal\":{\"name\":\"ACM Transactions on Interactive Intelligent Systems\",\"volume\":\"14 1\",\"pages\":\"1 - 27\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Interactive Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3579364\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Interactive Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3579364","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Enabling Efficient Web Data-Record Interaction for People with Visual Impairments via Proxy Interfaces
Web data records are usually accompanied by auxiliary webpage segments, such as filters, sort options, search form, and multi-page links, to enhance interaction efficiency and convenience for end users. However, blind and visually impaired (BVI) persons are presently unable to fully exploit the auxiliary segments like their sighted peers, since these segments are scattered all across the screen, and as such assistive technologies used by BVI users, i.e., screen reader and screen magnifier, are not geared for efficient interaction with such scattered content. Specifically, for blind screen reader users, content navigation is predominantly one-dimensional despite the support for skipping content, and therefore navigating to-and-fro between different parts of the webpage is tedious and frustrating. Similarly, low vision screen magnifier users have to continuously pan back-and-forth between different portions of a webpage, given that only a portion of the screen is viewable at any instant due to content enlargement. The extant techniques to overcome inefficient web interaction for BVI users have mostly focused on general web-browsing activities, and as such they provide little to no support for data record-specific interaction activities such as filtering and sorting – activities that are equally important for facilitating quick and easy access to desired data records. To fill this void, we present InSupport, a browser extension that: (i) employs custom machine learning-based algorithms to automatically extract auxiliary segments on any webpage containing data records; and (ii) provides an instantly accessible proxy one-stop interface for easily navigating the extracted auxiliary segments using either basic keyboard shortcuts or mouse actions. Evaluation studies with 14 blind participants and 16 low vision participants showed significant improvement in web usability with InSupport, driven by increased reduction in interaction time and user effort, compared to the state-of-the-art solutions.
期刊介绍:
The ACM Transactions on Interactive Intelligent Systems (TiiS) publishes papers on research concerning the design, realization, or evaluation of interactive systems that incorporate some form of machine intelligence. TIIS articles come from a wide range of research areas and communities. An article can take any of several complementary views of interactive intelligent systems, focusing on:
the intelligent technology,
the interaction of users with the system, or
both aspects at once.