Barbara Dunnett , Tracy Ward , Rachel Roberts , Jonathan Cheesewright
{"title":"含钼酸盐固体高活性液的物理性质","authors":"Barbara Dunnett , Tracy Ward , Rachel Roberts , Jonathan Cheesewright","doi":"10.1016/j.proche.2016.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>The reprocessing of irradiated nuclear fuel at Sellafield produces a nitric acid based Highly Active Liquor (HAL) waste. The liquor, containing fission products and process additives, is concentrated in an evaporator in order to reduce the volume and is then stored in Highly Active Storage Tanks (HASTs) prior to vitrification. Caesium phosphomolybdate (CPM) is precipitated during the evaporation process and can convert to zirconium molybdate (ZM) during storage.</p><p>During Post Operational Clean Out (POCO) of the HASTs, it is expected that their highly active content will be reduced by repeated cycles of washing using nitric acid and other reagents. Initial washings are likely to have a chemical composition comparable to concentrated HAL, becoming more dilute during the wash-out process. It is expected that the wash-out process will also recover significant quantities of molybdate solids (ZM, CPM or a mixture) from the HASTs.</p><p>In order to determine the processing challenges from such washings during POCO, the physical properties of varying concentrations of non-active HAL simulants containing molybdate solids have recently been measured by the UK's National Nuclear Laboratory. The following measurements are presented and discussed:</p><ul><li><span>•</span><span><p>Particle size distribution</p></span></li><li><span>•</span><span><p>Density</p></span></li><li><span>•</span><span><p>Settling behaviour of solids</p></span></li><li><span>•</span><span><p>Voidage of settled sediment beds</p></span></li><li><span>•</span><span><p>Viscosity</p></span></li><li><span>•</span><span><p>Yield stress</p></span></li><li><span>•</span><span><p>Influence of ZM morphology on physical properties</p></span></li></ul></div>","PeriodicalId":20431,"journal":{"name":"Procedia Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.proche.2016.10.004","citationCount":"4","resultStr":"{\"title\":\"Physical Properties of Highly Active Liquor Containing Molybdate Solids\",\"authors\":\"Barbara Dunnett , Tracy Ward , Rachel Roberts , Jonathan Cheesewright\",\"doi\":\"10.1016/j.proche.2016.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reprocessing of irradiated nuclear fuel at Sellafield produces a nitric acid based Highly Active Liquor (HAL) waste. The liquor, containing fission products and process additives, is concentrated in an evaporator in order to reduce the volume and is then stored in Highly Active Storage Tanks (HASTs) prior to vitrification. Caesium phosphomolybdate (CPM) is precipitated during the evaporation process and can convert to zirconium molybdate (ZM) during storage.</p><p>During Post Operational Clean Out (POCO) of the HASTs, it is expected that their highly active content will be reduced by repeated cycles of washing using nitric acid and other reagents. Initial washings are likely to have a chemical composition comparable to concentrated HAL, becoming more dilute during the wash-out process. It is expected that the wash-out process will also recover significant quantities of molybdate solids (ZM, CPM or a mixture) from the HASTs.</p><p>In order to determine the processing challenges from such washings during POCO, the physical properties of varying concentrations of non-active HAL simulants containing molybdate solids have recently been measured by the UK's National Nuclear Laboratory. The following measurements are presented and discussed:</p><ul><li><span>•</span><span><p>Particle size distribution</p></span></li><li><span>•</span><span><p>Density</p></span></li><li><span>•</span><span><p>Settling behaviour of solids</p></span></li><li><span>•</span><span><p>Voidage of settled sediment beds</p></span></li><li><span>•</span><span><p>Viscosity</p></span></li><li><span>•</span><span><p>Yield stress</p></span></li><li><span>•</span><span><p>Influence of ZM morphology on physical properties</p></span></li></ul></div>\",\"PeriodicalId\":20431,\"journal\":{\"name\":\"Procedia Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.proche.2016.10.004\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876619616300468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876619616300468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical Properties of Highly Active Liquor Containing Molybdate Solids
The reprocessing of irradiated nuclear fuel at Sellafield produces a nitric acid based Highly Active Liquor (HAL) waste. The liquor, containing fission products and process additives, is concentrated in an evaporator in order to reduce the volume and is then stored in Highly Active Storage Tanks (HASTs) prior to vitrification. Caesium phosphomolybdate (CPM) is precipitated during the evaporation process and can convert to zirconium molybdate (ZM) during storage.
During Post Operational Clean Out (POCO) of the HASTs, it is expected that their highly active content will be reduced by repeated cycles of washing using nitric acid and other reagents. Initial washings are likely to have a chemical composition comparable to concentrated HAL, becoming more dilute during the wash-out process. It is expected that the wash-out process will also recover significant quantities of molybdate solids (ZM, CPM or a mixture) from the HASTs.
In order to determine the processing challenges from such washings during POCO, the physical properties of varying concentrations of non-active HAL simulants containing molybdate solids have recently been measured by the UK's National Nuclear Laboratory. The following measurements are presented and discussed: