评估COVID-19推特上假新闻识别的初步模型

Ayu Mutiara Sari, Nurul Fajrin Ariyani, A. Ahmadiyah
{"title":"评估COVID-19推特上假新闻识别的初步模型","authors":"Ayu Mutiara Sari, Nurul Fajrin Ariyani, A. Ahmadiyah","doi":"10.1109/ICTS52701.2021.9607996","DOIUrl":null,"url":null,"abstract":"The spread propagation of fake news about COVID-19 can make it distressing to handle the pandemic situation. Identifying the fake and real news on social media needs to be done as quickly as possible to prevent chaos in the community and hampering the handling of COVID-19. In this study, we conducted some experiments to get a model that works well for classifying information into fake or real news using tweet data. We implemented two different ways to represent data to train machine learning classifier models, syntactic-based using Bag-of-Words and TF-IDF, and semantic-based using Word2Vec and FastText. We evaluated each model produced by the training process using two types of testing data. The results show that The Linear Support Vector Machine model using TF-IDF obtained the best F1-Score value in both testing data. The model obtained F1-Score 92.21% in Testing Data 1 and 93.33% in Testing Data 2.","PeriodicalId":6738,"journal":{"name":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","volume":"75 1","pages":"336-341"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluating The Preliminary Models to Identify Fake News on COVID-19 Tweets\",\"authors\":\"Ayu Mutiara Sari, Nurul Fajrin Ariyani, A. Ahmadiyah\",\"doi\":\"10.1109/ICTS52701.2021.9607996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spread propagation of fake news about COVID-19 can make it distressing to handle the pandemic situation. Identifying the fake and real news on social media needs to be done as quickly as possible to prevent chaos in the community and hampering the handling of COVID-19. In this study, we conducted some experiments to get a model that works well for classifying information into fake or real news using tweet data. We implemented two different ways to represent data to train machine learning classifier models, syntactic-based using Bag-of-Words and TF-IDF, and semantic-based using Word2Vec and FastText. We evaluated each model produced by the training process using two types of testing data. The results show that The Linear Support Vector Machine model using TF-IDF obtained the best F1-Score value in both testing data. The model obtained F1-Score 92.21% in Testing Data 1 and 93.33% in Testing Data 2.\",\"PeriodicalId\":6738,\"journal\":{\"name\":\"2021 13th International Conference on Information & Communication Technology and System (ICTS)\",\"volume\":\"75 1\",\"pages\":\"336-341\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Information & Communication Technology and System (ICTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTS52701.2021.9607996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS52701.2021.9607996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

假新闻的传播和传播会给应对疫情带来痛苦。要尽快识别社交媒体上的假新闻和真新闻,防止社会混乱,阻碍COVID-19的处理。在本研究中,我们进行了一些实验,以获得一个模型,可以很好地使用tweet数据将信息分类为假新闻或真实新闻。我们实现了两种不同的方式来表示数据以训练机器学习分类器模型,基于句法的使用Bag-of-Words和TF-IDF,以及基于语义的使用Word2Vec和FastText。我们使用两种类型的测试数据评估了训练过程产生的每个模型。结果表明,使用TF-IDF的线性支持向量机模型在两个测试数据中获得了最佳的F1-Score值。模型在测试数据1和测试数据2中分别获得了92.21%和93.33%的F1-Score。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating The Preliminary Models to Identify Fake News on COVID-19 Tweets
The spread propagation of fake news about COVID-19 can make it distressing to handle the pandemic situation. Identifying the fake and real news on social media needs to be done as quickly as possible to prevent chaos in the community and hampering the handling of COVID-19. In this study, we conducted some experiments to get a model that works well for classifying information into fake or real news using tweet data. We implemented two different ways to represent data to train machine learning classifier models, syntactic-based using Bag-of-Words and TF-IDF, and semantic-based using Word2Vec and FastText. We evaluated each model produced by the training process using two types of testing data. The results show that The Linear Support Vector Machine model using TF-IDF obtained the best F1-Score value in both testing data. The model obtained F1-Score 92.21% in Testing Data 1 and 93.33% in Testing Data 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] Outlier Detection and Decision Tree for Wireless Sensor Network Fault Diagnosis Graph Algorithm for Anomaly Prediction in East Java Student Admission System FarmEasy: An Intelligent Platform to Empower Crops Prediction and Crops Marketing Hiding Messages in Audio using Modulus Operation and Simple Partition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1