Giulia Guidi, Marquita Ellis, A. Buluç, K. Yelick, D. Culler
{"title":"10年后:云计算正在缩小性能差距","authors":"Giulia Guidi, Marquita Ellis, A. Buluç, K. Yelick, D. Culler","doi":"10.1145/3447545.3451183","DOIUrl":null,"url":null,"abstract":"Can cloud computing infrastructures provide HPC-competitive performance for scientific applications broadly? Despite prolific related literature, this question remains open. Answers are crucial for designing future systems and democratizing high-performance computing. We present a multi-level approach to investigate the performance gap between HPC and cloud computing, isolating different variables that contribute to this gap. Our experiments are divided into (i) hardware and system microbenchmarks and (ii) user application proxies. The results show that today's high-end cloud computing can deliver HPC-competitive performance not only for computationally intensive applications, but also for memory- and communication-intensive applications -- at least at modest scales -- thanks to the high-speed memory systems and interconnects and dedicated batch scheduling now available on some cloud platforms.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"10 Years Later: Cloud Computing is Closing the Performance Gap\",\"authors\":\"Giulia Guidi, Marquita Ellis, A. Buluç, K. Yelick, D. Culler\",\"doi\":\"10.1145/3447545.3451183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Can cloud computing infrastructures provide HPC-competitive performance for scientific applications broadly? Despite prolific related literature, this question remains open. Answers are crucial for designing future systems and democratizing high-performance computing. We present a multi-level approach to investigate the performance gap between HPC and cloud computing, isolating different variables that contribute to this gap. Our experiments are divided into (i) hardware and system microbenchmarks and (ii) user application proxies. The results show that today's high-end cloud computing can deliver HPC-competitive performance not only for computationally intensive applications, but also for memory- and communication-intensive applications -- at least at modest scales -- thanks to the high-speed memory systems and interconnects and dedicated batch scheduling now available on some cloud platforms.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447545.3451183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447545.3451183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
10 Years Later: Cloud Computing is Closing the Performance Gap
Can cloud computing infrastructures provide HPC-competitive performance for scientific applications broadly? Despite prolific related literature, this question remains open. Answers are crucial for designing future systems and democratizing high-performance computing. We present a multi-level approach to investigate the performance gap between HPC and cloud computing, isolating different variables that contribute to this gap. Our experiments are divided into (i) hardware and system microbenchmarks and (ii) user application proxies. The results show that today's high-end cloud computing can deliver HPC-competitive performance not only for computationally intensive applications, but also for memory- and communication-intensive applications -- at least at modest scales -- thanks to the high-speed memory systems and interconnects and dedicated batch scheduling now available on some cloud platforms.