在环境风险评估的背景下实施基于不确定性的风险概念化,强调不确定假设的偏差

IF 1.7 3区 工程技术 Q3 ENGINEERING, CIVIL Civil Engineering and Environmental Systems Pub Date : 2019-10-02 DOI:10.1080/10286608.2019.1702029
Roger Flage
{"title":"在环境风险评估的背景下实施基于不确定性的风险概念化,强调不确定假设的偏差","authors":"Roger Flage","doi":"10.1080/10286608.2019.1702029","DOIUrl":null,"url":null,"abstract":"ABSTRACT Environmental risk assessments are routinely carried out in the Norwegian petroleum industry. As this industry is moving north, towards the Arctic and into areas with differing vulnerabilities and new risk sources compared to the now well-developed areas, previous operational experience and analytical practice may become less relevant. Reflecting the lack of knowledge (i.e. the uncertainty) that exists, and the strength of the available knowledge, then becomes critical. In the present paper, we review and discuss the industry guideline that for a long time has formed the methodological basis for these assessments, focusing on its foundation concerning risk and uncertainty. We conclude that there is a potential for improvement, and to contribute to improving the guideline, we describe how to implement – in the context of environmental risk assessment – a framework for conceptualising risk and its description that is consistent with the new uncertainty-based risk perspective recently adopted by the Petroleum Safety Authority Norway and in the Society for Risk Analysis glossary. The implementation includes a description and exemplification of a method for assessing the bias of uncertain risk assessment assumptions.","PeriodicalId":50689,"journal":{"name":"Civil Engineering and Environmental Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementing an uncertainty-based risk conceptualisation in the context of environmental risk assessment, with emphasis on the bias of uncertain assumptions\",\"authors\":\"Roger Flage\",\"doi\":\"10.1080/10286608.2019.1702029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Environmental risk assessments are routinely carried out in the Norwegian petroleum industry. As this industry is moving north, towards the Arctic and into areas with differing vulnerabilities and new risk sources compared to the now well-developed areas, previous operational experience and analytical practice may become less relevant. Reflecting the lack of knowledge (i.e. the uncertainty) that exists, and the strength of the available knowledge, then becomes critical. In the present paper, we review and discuss the industry guideline that for a long time has formed the methodological basis for these assessments, focusing on its foundation concerning risk and uncertainty. We conclude that there is a potential for improvement, and to contribute to improving the guideline, we describe how to implement – in the context of environmental risk assessment – a framework for conceptualising risk and its description that is consistent with the new uncertainty-based risk perspective recently adopted by the Petroleum Safety Authority Norway and in the Society for Risk Analysis glossary. The implementation includes a description and exemplification of a method for assessing the bias of uncertain risk assessment assumptions.\",\"PeriodicalId\":50689,\"journal\":{\"name\":\"Civil Engineering and Environmental Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering and Environmental Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10286608.2019.1702029\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering and Environmental Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10286608.2019.1702029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

摘要

环境风险评估是挪威石油工业的常规工作。随着油气行业向北移动,向北极地区移动,进入与目前发达地区相比存在不同脆弱性和新风险源的地区,以前的操作经验和分析实践可能变得不那么重要。反映存在的知识的缺乏(即不确定性)和可用知识的强度,然后变得至关重要。在本文中,我们回顾和讨论了长期以来形成这些评估的方法论基础的行业指南,重点是其关于风险和不确定性的基础。我们得出结论,有改进的潜力,并有助于改进指导方针,我们描述了如何实施-在环境风险评估的背景下-一个概念化风险的框架及其描述,这与挪威石油安全局和风险分析协会最近采用的新的基于不确定性的风险观点一致。实施例包括用于评估不确定风险评估假设偏差的方法的描述和示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementing an uncertainty-based risk conceptualisation in the context of environmental risk assessment, with emphasis on the bias of uncertain assumptions
ABSTRACT Environmental risk assessments are routinely carried out in the Norwegian petroleum industry. As this industry is moving north, towards the Arctic and into areas with differing vulnerabilities and new risk sources compared to the now well-developed areas, previous operational experience and analytical practice may become less relevant. Reflecting the lack of knowledge (i.e. the uncertainty) that exists, and the strength of the available knowledge, then becomes critical. In the present paper, we review and discuss the industry guideline that for a long time has formed the methodological basis for these assessments, focusing on its foundation concerning risk and uncertainty. We conclude that there is a potential for improvement, and to contribute to improving the guideline, we describe how to implement – in the context of environmental risk assessment – a framework for conceptualising risk and its description that is consistent with the new uncertainty-based risk perspective recently adopted by the Petroleum Safety Authority Norway and in the Society for Risk Analysis glossary. The implementation includes a description and exemplification of a method for assessing the bias of uncertain risk assessment assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Civil Engineering and Environmental Systems
Civil Engineering and Environmental Systems 工程技术-工程:土木
CiteScore
3.30
自引率
16.70%
发文量
10
审稿时长
>12 weeks
期刊介绍: Civil Engineering and Environmental Systems is devoted to the advancement of systems thinking and systems techniques throughout systems engineering, environmental engineering decision-making, and engineering management. We do this by publishing the practical applications and developments of "hard" and "soft" systems techniques and thinking. Submissions that allow for better analysis of civil engineering and environmental systems might look at: -Civil Engineering optimization -Risk assessment in engineering -Civil engineering decision analysis -System identification in engineering -Civil engineering numerical simulation -Uncertainty modelling in engineering -Qualitative modelling of complex engineering systems
期刊最新文献
Accuracy of stochastic finite element analyses for the safety assessment of unreinforced masonry shear walls Investigating the influencing parameters with automated scour severity detection using Bayesian neural networks Celebrating 40 years of the CEES journal Carbon footprint assessment of maintenance and rehabilitation techniques for sewer systems Systems methods and real world practice – Paul Jowitt’s pilgrimage in his writings for this journal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1