3d打印连续纤维聚合物复合材料的有效导热性能

IF 1.8 Q3 ENGINEERING, MANUFACTURING Advanced Manufacturing: Polymer & Composites Science Pub Date : 2020-01-02 DOI:10.1080/20550340.2019.1710023
Y. Ibrahim, A. Elkholy, Jonathon S. Schofield, Garrett W. Melenka, R. Kempers
{"title":"3d打印连续纤维聚合物复合材料的有效导热性能","authors":"Y. Ibrahim, A. Elkholy, Jonathon S. Schofield, Garrett W. Melenka, R. Kempers","doi":"10.1080/20550340.2019.1710023","DOIUrl":null,"url":null,"abstract":"Abstract 3D printing, especially fused filament fabrication, presents a potentially attractive manufacturing technique for thermal applications such as polymer heat exchangers due to the ability to create complex internal geometries which can be used to enhance convective heat transfer. Recently, commercial and modified open-source printers have utilized continuous fibers such as carbon fiber to create continuous fiber reinforced polymer composites (FRPCs) which enhance the mechanical properties of the printed products. This continuous filler network can also serve to improve thermal conductivity. In this study, the effective thermal conductivity of 3D-printed FRPCs is characterized using a steady-state, modified, guarded hot plate apparatus. The effect of the fiber direction and volume fraction on the effective thermal conductivity of the 3D-printed composites was characterized experimentally and modeled analytically using series and parallel models. Thermal conductivities of up to 2.97 W/mK were measured for samples in which the fibers were aligned with the direction of heat flow. Measured values were in good agreement with analytical model predictions. The importance of fiber conductivity on overall performance of the FRPCs was further demonstrated using a handlaid-up, pitch-based carbon fiber sample which exhibited an effective thermal conductivity of 23.6 W/mK. Graphical Abstract","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Effective thermal conductivity of 3D-printed continuous fiber polymer composites\",\"authors\":\"Y. Ibrahim, A. Elkholy, Jonathon S. Schofield, Garrett W. Melenka, R. Kempers\",\"doi\":\"10.1080/20550340.2019.1710023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract 3D printing, especially fused filament fabrication, presents a potentially attractive manufacturing technique for thermal applications such as polymer heat exchangers due to the ability to create complex internal geometries which can be used to enhance convective heat transfer. Recently, commercial and modified open-source printers have utilized continuous fibers such as carbon fiber to create continuous fiber reinforced polymer composites (FRPCs) which enhance the mechanical properties of the printed products. This continuous filler network can also serve to improve thermal conductivity. In this study, the effective thermal conductivity of 3D-printed FRPCs is characterized using a steady-state, modified, guarded hot plate apparatus. The effect of the fiber direction and volume fraction on the effective thermal conductivity of the 3D-printed composites was characterized experimentally and modeled analytically using series and parallel models. Thermal conductivities of up to 2.97 W/mK were measured for samples in which the fibers were aligned with the direction of heat flow. Measured values were in good agreement with analytical model predictions. The importance of fiber conductivity on overall performance of the FRPCs was further demonstrated using a handlaid-up, pitch-based carbon fiber sample which exhibited an effective thermal conductivity of 23.6 W/mK. Graphical Abstract\",\"PeriodicalId\":7243,\"journal\":{\"name\":\"Advanced Manufacturing: Polymer & Composites Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Manufacturing: Polymer & Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20550340.2019.1710023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2019.1710023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 24

摘要

3D打印,特别是熔丝制造,为聚合物热交换器等热应用提供了一种潜在的有吸引力的制造技术,因为它能够创建复杂的内部几何形状,可用于增强对流传热。最近,商业和改进的开源打印机利用连续纤维(如碳纤维)来制造连续纤维增强聚合物复合材料(frpc),从而提高了打印产品的机械性能。这种连续填充网络也可以用于提高导热性。在这项研究中,使用稳态,改进,保护热板装置表征了3d打印frpc的有效导热性。通过实验表征了纤维方向和体积分数对3d打印复合材料有效导热系数的影响,并采用串联和并行模型进行了解析建模。当纤维与热流方向对齐时,测得样品的导热系数高达2.97 W/mK。实测值与分析模型预测结果吻合良好。通过手工制作的沥青基碳纤维样品进一步证明了纤维导电性对frpc整体性能的重要性,该样品的有效导热系数为23.6 W/mK。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective thermal conductivity of 3D-printed continuous fiber polymer composites
Abstract 3D printing, especially fused filament fabrication, presents a potentially attractive manufacturing technique for thermal applications such as polymer heat exchangers due to the ability to create complex internal geometries which can be used to enhance convective heat transfer. Recently, commercial and modified open-source printers have utilized continuous fibers such as carbon fiber to create continuous fiber reinforced polymer composites (FRPCs) which enhance the mechanical properties of the printed products. This continuous filler network can also serve to improve thermal conductivity. In this study, the effective thermal conductivity of 3D-printed FRPCs is characterized using a steady-state, modified, guarded hot plate apparatus. The effect of the fiber direction and volume fraction on the effective thermal conductivity of the 3D-printed composites was characterized experimentally and modeled analytically using series and parallel models. Thermal conductivities of up to 2.97 W/mK were measured for samples in which the fibers were aligned with the direction of heat flow. Measured values were in good agreement with analytical model predictions. The importance of fiber conductivity on overall performance of the FRPCs was further demonstrated using a handlaid-up, pitch-based carbon fiber sample which exhibited an effective thermal conductivity of 23.6 W/mK. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
11
审稿时长
16 weeks
期刊最新文献
Mitigating void growth in out-of-autoclave prepreg processing using a semi-permeable membrane to maintain resin pressure Analysis and development of a brazing method to weld carbon fiber-reinforced poly ether ketone ketone with amorphous PEKK In-situ analysis of cocured scarf patch repairs Bending properties of structural foams manufactured in a hot press process Experimental validation of co-cure process of honeycomb sandwich structures simulation: adhesive fillet shape and bond-line porosity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1