加拿大足球游戏中的获胜概率模型

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Business Analytics Pub Date : 2021-12-18 DOI:10.1080/2573234X.2021.2015252
S. Hill
{"title":"加拿大足球游戏中的获胜概率模型","authors":"S. Hill","doi":"10.1080/2573234X.2021.2015252","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article presents in-game win probability models for Canadian football. Play-by-play and wagering data for games from the Canadian Football League for the 2015 to 2019 seasons is used to create logistic regression and gradient boosting models. Models with and without the effect of pregame spread and total (over/under) data are presented and discussed. The resulting win probability models are well-calibrated and can be used to support in-game decision-making, review coaching decisions, estimate the magnitude of team “comebacks”, and potentially identify in-game wagering opportunities. An R Shiny application is provided to allow for estimation of in-game win probability for user-provided game state inputs. Opportunities for future work are identified and described.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In-game win probability models for Canadian football\",\"authors\":\"S. Hill\",\"doi\":\"10.1080/2573234X.2021.2015252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This article presents in-game win probability models for Canadian football. Play-by-play and wagering data for games from the Canadian Football League for the 2015 to 2019 seasons is used to create logistic regression and gradient boosting models. Models with and without the effect of pregame spread and total (over/under) data are presented and discussed. The resulting win probability models are well-calibrated and can be used to support in-game decision-making, review coaching decisions, estimate the magnitude of team “comebacks”, and potentially identify in-game wagering opportunities. An R Shiny application is provided to allow for estimation of in-game win probability for user-provided game state inputs. Opportunities for future work are identified and described.\",\"PeriodicalId\":36417,\"journal\":{\"name\":\"Journal of Business Analytics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2573234X.2021.2015252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2021.2015252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了加拿大足球比赛中的获胜概率模型。使用2015年至2019年加拿大足球联盟比赛的详细比赛和投注数据来创建逻辑回归和梯度增强模型。提出并讨论了具有和不具有博弈前扩散和总(超过/低于)数据影响的模型。由此产生的获胜概率模型经过精心校准,可用于支持游戏内决策、评估教练决策、估计团队“卷土重来”的程度,并潜在地识别游戏内下注机会。提供了一个R Shiny应用程序,允许估计用户提供的游戏状态输入的游戏内获胜概率。确定和描述未来工作的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-game win probability models for Canadian football
ABSTRACT This article presents in-game win probability models for Canadian football. Play-by-play and wagering data for games from the Canadian Football League for the 2015 to 2019 seasons is used to create logistic regression and gradient boosting models. Models with and without the effect of pregame spread and total (over/under) data are presented and discussed. The resulting win probability models are well-calibrated and can be used to support in-game decision-making, review coaching decisions, estimate the magnitude of team “comebacks”, and potentially identify in-game wagering opportunities. An R Shiny application is provided to allow for estimation of in-game win probability for user-provided game state inputs. Opportunities for future work are identified and described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
期刊最新文献
Decoding technological frames: a qualitative inquiry into business analytics perspectives Maximising competitive advantage: the role of strategic business analytics framework in business strategies Data Analytics for Societal Challenges: Examining Student Participation in the National School Lunch Program Exploring the relationship between YouTube video optimisation practices and video rankings for online marketing: a machine learning approach The era of business analytics: identifying and ranking the differences between business intelligence and data science from practitioners’ perspective using the Delphi method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1